{"version":3,"file":"js/6582-739d884755bc7c125363.js","mappings":";qIAcA,IAkFEA,EAASC,EAlFPC,EAAY,KAIdC,EAAa,IAGbC,EAAW,mBAGXC,EAAO,qgCAGPC,EAAK,qgCAILC,EAAW,CAOTC,UAAW,GAiBXC,SAAU,EAeVC,OAAQ,EAIRC,UAAW,EAIXC,SAAW,GAIXC,MAAOX,EAIPY,KAAMZ,EAGNa,QAAQ,GAQVC,GAAW,EAEXC,EAAe,kBACfC,EAAkBD,EAAe,qBACjCE,EAAyBF,EAAe,2BACxCG,EAAoBH,EAAe,qBACnCI,EAAM,mBAENC,EAAYC,KAAKC,MACjBC,EAAUF,KAAKG,IAEfC,EAAW,6CACXC,EAAQ,yDACRC,EAAU,gDACVC,EAAY,qCAEZC,EAAO,IAIPC,EAAiB3B,EAAK4B,OAAS,EAC/BC,EAAe5B,EAAG2B,OAAS,EAG3BE,EAAI,CAAEC,YAAaf,GAy1ErB,SAASgB,EAAeC,GACtB,IAAIC,EAAGC,EAAGC,EACRC,EAAkBJ,EAAEL,OAAS,EAC7BU,EAAM,GACNC,EAAIN,EAAE,GAER,GAAII,EAAkB,EAAG,CAEvB,IADAC,GAAOC,EACFL,EAAI,EAAGA,EAAIG,EAAiBH,KAE/BC,EA12EO,GAy2EPC,EAAKH,EAAEC,GAAK,IACMN,UACXU,GAAOE,EAAcL,IAC5BG,GAAOF,GAKTD,EAj3ES,GAg3ETC,GADAG,EAAIN,EAAEC,IACG,IACSN,UACXU,GAAOE,EAAcL,GAC9B,MAAO,GAAU,IAANI,EACT,MAAO,IAIT,KAAOA,EAAI,KAAO,GAAIA,GAAK,GAE3B,OAAOD,EAAMC,CACf,CAGA,SAASE,EAAWP,EAAGQ,EAAKC,GAC1B,GAAIT,MAAQA,GAAKA,EAAIQ,GAAOR,EAAIS,EAC9B,MAAMC,MAAM/B,EAAkBqB,EAElC,CAQA,SAASW,EAAoBZ,EAAGC,EAAGY,EAAIC,GACrC,IAAIC,EAAIb,EAAGc,EAAGC,EAGd,IAAKf,EAAIF,EAAE,GAAIE,GAAK,GAAIA,GAAK,KAAMD,EAwCnC,QArCMA,EAAI,GACRA,GAl5ES,EAm5ETc,EAAK,IAELA,EAAK9B,KAAKiC,MAAMjB,EAAI,GAr5EX,GAs5ETA,GAt5ES,GA45EXC,EAAIf,EAAQ,GA55ED,EA45EgBc,GAC3BgB,EAAKjB,EAAEe,GAAMb,EAAI,EAEA,MAAbY,EACEb,EAAI,GACG,GAALA,EAAQgB,EAAKA,EAAK,IAAM,EACd,GAALhB,IAAQgB,EAAKA,EAAK,GAAK,GAChCD,EAAIH,EAAK,GAAW,OAANI,GAAeJ,EAAK,GAAW,OAANI,GAAqB,KAANA,GAAqB,GAANA,GAErED,GAAKH,EAAK,GAAKI,EAAK,GAAKf,GAAKW,EAAK,GAAKI,EAAK,GAAKf,EAAI,KACnDF,EAAEe,EAAK,GAAKb,EAAI,IAAM,IAAMf,EAAQ,GAAIc,EAAI,GAAK,IAC/CgB,GAAMf,EAAI,GAAW,GAANe,IAAyC,IAA5BjB,EAAEe,EAAK,GAAKb,EAAI,IAAM,GAGrDD,EAAI,GACG,GAALA,EAAQgB,EAAKA,EAAK,IAAO,EACf,GAALhB,EAAQgB,EAAKA,EAAK,IAAM,EACnB,GAALhB,IAAQgB,EAAKA,EAAK,GAAK,GAChCD,GAAKF,GAAaD,EAAK,IAAY,MAANI,IAAeH,GAAaD,EAAK,GAAW,MAANI,GAEnED,IAAMF,GAAaD,EAAK,IAAMI,EAAK,GAAKf,IACtCY,GAAaD,EAAK,GAAMI,EAAK,GAAKf,EAAI,KACrCF,EAAEe,EAAK,GAAKb,EAAI,IAAO,IAAMf,EAAQ,GAAIc,EAAI,GAAK,EAIlDe,CACT,CAMA,SAASG,EAAYd,EAAKe,EAAQC,GAOhC,IANA,IAAIC,EAEFC,EADAC,EAAM,CAAC,GAEPvB,EAAI,EACJwB,EAAOpB,EAAIV,OAENM,EAAIwB,GAAO,CAChB,IAAKF,EAAOC,EAAI7B,OAAQ4B,KAASC,EAAID,IAASH,EAE9C,IADAI,EAAI,IAAM1D,EAAS4D,QAAQrB,EAAIsB,OAAO1B,MACjCqB,EAAI,EAAGA,EAAIE,EAAI7B,OAAQ2B,IACtBE,EAAIF,GAAKD,EAAU,SACF,IAAfG,EAAIF,EAAI,KAAeE,EAAIF,EAAI,GAAK,GACxCE,EAAIF,EAAI,IAAME,EAAIF,GAAKD,EAAU,EACjCG,EAAIF,IAAMD,EAGhB,CAEA,OAAOG,EAAII,SACb,CAh4EA/B,EAAEgC,cAAgBhC,EAAEiC,IAAM,WACxB,IAAIC,EAAI,IAAIC,KAAKC,YAAYD,MAE7B,OADID,EAAEG,EAAI,IAAGH,EAAEG,EAAI,GACZC,EAASJ,EAClB,EAQAlC,EAAEqB,KAAO,WACP,OAAOiB,EAAS,IAAIH,KAAKC,YAAYD,MAAOA,KAAKI,EAAI,EAAG,EAC1D,EAWAvC,EAAEwC,UAAYxC,EAAEyC,MAAQ,SAAU7B,EAAKC,GACrC,IACEqB,EAAIC,KACJO,EAAOR,EAAEE,YAGX,GAFAxB,EAAM,IAAI8B,EAAK9B,GACfC,EAAM,IAAI6B,EAAK7B,IACVD,EAAIyB,IAAMxB,EAAIwB,EAAG,OAAO,IAAIK,EAAKC,KACtC,GAAI/B,EAAIgC,GAAG/B,GAAM,MAAMC,MAAM/B,EAAkB8B,GAE/C,OADIqB,EAAEW,IAAIjC,GACC,EAAIA,EAAMsB,EAAEW,IAAIhC,GAAO,EAAIA,EAAM,IAAI6B,EAAKR,EACvD,EAWAlC,EAAE8C,WAAa9C,EAAE6C,IAAM,SAAUE,GAC/B,IAAI3C,EAAGqB,EAAGuB,EAAKC,EACbf,EAAIC,KACJe,EAAKhB,EAAE/B,EACPgD,GAAMJ,EAAI,IAAIb,EAAEE,YAAYW,IAAI5C,EAChCiD,EAAKlB,EAAEG,EACPgB,EAAKN,EAAEV,EAGT,IAAKa,IAAOC,EACV,OAAQC,GAAOC,EAAWD,IAAOC,EAAKD,EAAKF,IAAOC,EAAK,GAAKD,EAAKE,EAAK,EAAI,GAAK,EAA3DT,IAItB,IAAKO,EAAG,KAAOC,EAAG,GAAI,OAAOD,EAAG,GAAKE,EAAKD,EAAG,IAAME,EAAK,EAGxD,GAAID,IAAOC,EAAI,OAAOD,EAGtB,GAAIlB,EAAEK,IAAMQ,EAAER,EAAG,OAAOL,EAAEK,EAAIQ,EAAER,EAAIa,EAAK,EAAI,GAAK,EAMlD,IAAKhD,EAAI,EAAGqB,GAJZuB,EAAME,EAAGpD,SACTmD,EAAME,EAAGrD,QAGmBkD,EAAMC,EAAK7C,EAAIqB,IAAKrB,EAC9C,GAAI8C,EAAG9C,KAAO+C,EAAG/C,GAAI,OAAO8C,EAAG9C,GAAK+C,EAAG/C,GAAKgD,EAAK,EAAI,GAAK,EAI5D,OAAOJ,IAAQC,EAAM,EAAID,EAAMC,EAAMG,EAAK,EAAI,GAAK,CACrD,EAgBApD,EAAEsD,OAAStD,EAAEuD,IAAM,WACjB,IAAIC,EAAIxC,EACNkB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAKF,EAAE/B,EAGF+B,EAAE/B,EAAE,IAETqD,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAKpE,KAAKyB,IAAIqB,EAAEK,EAAGL,EAAEuB,MA3L3B,EA4LXf,EAAKpE,SAAW,EAEhB4D,EA2xEF,SAAgBQ,EAAMR,GACpB,IAAI7B,EAAGqD,EAAKX,EAEZ,GAAIb,EAAEyB,SAAU,OAAOzB,EAMvBwB,EAAMxB,EAAE/B,EAAEL,OACN4D,EAAM,GAERX,GAAK,EAAIa,EAAQ,EADjBvD,EAAIjB,KAAKiC,KAAKqC,EAAM,KACIG,YAExBxD,EAAI,GACJ0C,EAAI,gCAGNL,EAAKrE,WAAagC,EAElB6B,EAAI4B,EAAapB,EAAM,EAAGR,EAAE6B,MAAMhB,GAAI,IAAIL,EAAK,IAG/C,IAAK,IAAItC,EAAIC,EAAGD,KAAM,CACpB,IAAI4D,EAAQ9B,EAAE6B,MAAM7B,GACpBA,EAAI8B,EAAMD,MAAMC,GAAOC,MAAMD,GAAOD,MAAM,GAAGG,KAAK,EACpD,CAIA,OAFAxB,EAAKrE,WAAagC,EAEX6B,CACT,CA1zEMoB,CAAOZ,EAAMyB,EAAiBzB,EAAMR,IAExCQ,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETsB,EAAqB,GAAZxE,GAA6B,GAAZA,EAAgBoE,EAAEkC,MAAQlC,EAAGsB,EAAIxC,GAAI,IAZlD,IAAI0B,EAAK,GAHZ,IAAIA,EAAKC,IAgB5B,EAmBA3C,EAAEqE,SAAWrE,EAAEsE,KAAO,WACpB,IAAI/B,EAAGgC,EAAGC,EAAGrD,EAAGsD,EAAKpC,EAAGoB,EAAIiB,EAAGC,EAAIC,EACjC1C,EAAIC,KACJO,EAAOR,EAAEE,YAEX,IAAKF,EAAE2C,YAAc3C,EAAEyB,SAAU,OAAO,IAAIjB,EAAKR,GAoCjD,IAnCArD,GAAW,GAGXwD,EAAIH,EAAEG,EAAI/C,EAAQ4C,EAAEG,EAAIH,EAAG,EAAI,KAIrB9C,KAAK6C,IAAII,IAAM,IAqBvBlB,EAAI,IAAIuB,EAAKL,EAAEwB,aApBfW,EAAItE,EAAegC,EAAE/B,IAIjBkC,IAHJE,EAAIL,EAAEK,GAGOiC,EAAE1E,OAAS,GAAK,KAAG0E,GAAW,GAALnC,IAAgB,GAANA,EAAU,IAAM,MAChEA,EAAI/C,EAAQkF,EAAG,EAAI,GAGnBjC,EAAIpD,GAAWoD,EAAI,GAAK,IAAMA,EAAI,IAAMA,EAAI,GAAK,EAAI,KASrDpB,EAAI,IAAIuB,EANN8B,EADEnC,GAAK,IACH,KAAOE,GAEXiC,EAAInC,EAAEyC,iBACAC,MAAM,EAAGP,EAAE3C,QAAQ,KAAO,GAAKU,IAIrCF,EAAIH,EAAEG,GAKVoB,GAAMlB,EAAIG,EAAKrE,WAAa,IAW1B,GAJAuG,GADAD,GADAD,EAAIvD,GACG4C,MAAMW,GAAGX,MAAMW,IACTR,KAAKhC,GAClBf,EAAI6D,EAAOJ,EAAQV,KAAKhC,GAAG6B,MAAMW,GAAIE,EAAQV,KAAKS,GAAKlB,EAAK,EAAG,GAG3DvD,EAAewE,EAAEvE,GAAG4E,MAAM,EAAGtB,MAASe,EAAItE,EAAeiB,EAAEhB,IAAI4E,MAAM,EAAGtB,GAAK,CAK/E,GAAS,SAJTe,EAAIA,EAAEO,MAAMtB,EAAK,EAAGA,EAAK,MAILgB,GAAY,QAALD,GAepB,EAICA,KAAOA,EAAEO,MAAM,IAAqB,KAAfP,EAAE1C,OAAO,MAGlCQ,EAASnB,EAAGoB,EAAI,EAAG,GACnBgC,GAAKpD,EAAE4C,MAAM5C,GAAG4C,MAAM5C,GAAG8D,GAAG/C,IAG9B,KACF,CAvBE,IAAKuC,IACHnC,EAASoC,EAAGnC,EAAI,EAAG,GAEfmC,EAAEX,MAAMW,GAAGX,MAAMW,GAAGO,GAAG/C,IAAI,CAC7Bf,EAAIuD,EACJ,KACF,CAGFjB,GAAM,EACNgB,EAAM,CAcV,CAKF,OAFA5F,GAAW,EAEJyD,EAASnB,EAAGoB,EAAGG,EAAKpE,SAAUiG,EACvC,EAOAvE,EAAEkF,cAAgBlF,EAAEmF,GAAK,WACvB,IAAI1E,EACFN,EAAIgC,KAAKhC,EACTqE,EAAI7B,IAEN,GAAIxC,EAAG,CAML,GAJAqE,EA5TS,IA2TT/D,EAAIN,EAAEL,OAAS,GACNX,EAAUgD,KAAKI,EA5Tf,IA+TT9B,EAAIN,EAAEM,GACC,KAAOA,EAAI,IAAM,EAAGA,GAAK,GAAI+D,IAChCA,EAAI,IAAGA,EAAI,EACjB,CAEA,OAAOA,CACT,EAwBAxE,EAAEoF,UAAYpF,EAAEqF,IAAM,SAAUtC,GAC9B,OAAOiC,EAAO7C,KAAM,IAAIA,KAAKC,YAAYW,GAC3C,EAQA/C,EAAEsF,mBAAqBtF,EAAEuF,SAAW,SAAUxC,GAC5C,IACEL,EADMP,KACGC,YACX,OAAOE,EAAS0C,EAFR7C,KAEkB,IAAIO,EAAKK,GAAI,EAAG,EAAG,GAAIL,EAAKrE,UAAWqE,EAAKpE,SACxE,EAOA0B,EAAEwF,OAASxF,EAAEiF,GAAK,SAAUlC,GAC1B,OAAuB,IAAhBZ,KAAKU,IAAIE,EAClB,EAQA/C,EAAEX,MAAQ,WACR,OAAOiD,EAAS,IAAIH,KAAKC,YAAYD,MAAOA,KAAKI,EAAI,EAAG,EAC1D,EAQAvC,EAAEyF,YAAczF,EAAE4C,GAAK,SAAUG,GAC/B,OAAOZ,KAAKU,IAAIE,GAAK,CACvB,EAQA/C,EAAE0F,qBAAuB1F,EAAE2F,IAAM,SAAU5C,GACzC,IAAI1C,EAAI8B,KAAKU,IAAIE,GACjB,OAAY,GAAL1C,GAAgB,IAANA,CACnB,EA4BAL,EAAE4F,iBAAmB5F,EAAE6F,KAAO,WAC5B,IAAIxF,EAAGmE,EAAGhB,EAAIxC,EAAI0C,EAChBxB,EAAIC,KACJO,EAAOR,EAAEE,YACT0D,EAAM,IAAIpD,EAAK,GAEjB,IAAKR,EAAE2C,WAAY,OAAO,IAAInC,EAAKR,EAAEG,EAAI,IAAQM,KACjD,GAAIT,EAAEyB,SAAU,OAAOmC,EAEvBtC,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAKpE,KAAKyB,IAAIqB,EAAEK,EAAGL,EAAEuB,MAAQ,EAC9Cf,EAAKpE,SAAW,GAChBoF,EAAMxB,EAAE/B,EAAEL,QAOA,GAER0E,GAAK,EAAIZ,EAAQ,EADjBvD,EAAIjB,KAAKiC,KAAKqC,EAAM,KACIG,YAExBxD,EAAI,GACJmE,EAAI,gCAGNtC,EAAI4B,EAAapB,EAAM,EAAGR,EAAE6B,MAAMS,GAAI,IAAI9B,EAAK,IAAI,GAMnD,IAHA,IAAIqD,EACF3F,EAAIC,EACJ2F,EAAK,IAAItD,EAAK,GACTtC,KACL2F,EAAU7D,EAAE6B,MAAM7B,GAClBA,EAAI4D,EAAI7B,MAAM8B,EAAQhC,MAAMiC,EAAG/B,MAAM8B,EAAQhC,MAAMiC,MAGrD,OAAO1D,EAASJ,EAAGQ,EAAKrE,UAAYmF,EAAId,EAAKpE,SAAW0C,GAAI,EAC9D,EAiCAhB,EAAEiG,eAAiBjG,EAAEkG,KAAO,WAC1B,IAAI7F,EAAGmD,EAAIxC,EAAI0C,EACbxB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,IAAKF,EAAE2C,YAAc3C,EAAEyB,SAAU,OAAO,IAAIjB,EAAKR,GAQjD,GANAsB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAKpE,KAAKyB,IAAIqB,EAAEK,EAAGL,EAAEuB,MAAQ,EAC9Cf,EAAKpE,SAAW,GAChBoF,EAAMxB,EAAE/B,EAAEL,QAEA,EACRoC,EAAI4B,EAAapB,EAAM,EAAGR,EAAGA,GAAG,OAC3B,CAYL7B,GADAA,EAAI,IAAMjB,KAAK+G,KAAKzC,IACZ,GAAK,GAAS,EAAJrD,EAGlB6B,EAAI4B,EAAapB,EAAM,EADvBR,EAAIA,EAAE6B,MAAM,EAAIH,EAAQ,EAAGvD,IACE6B,GAAG,GAOhC,IAJA,IAAIkE,EACFC,EAAK,IAAI3D,EAAK,GACd4D,EAAM,IAAI5D,EAAK,IACf6D,EAAM,IAAI7D,EAAK,IACVrC,KACL+F,EAAUlE,EAAE6B,MAAM7B,GAClBA,EAAIA,EAAE6B,MAAMsC,EAAGnC,KAAKkC,EAAQrC,MAAMuC,EAAIvC,MAAMqC,GAASlC,KAAKqC,KAE9D,CAKA,OAHA7D,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETsB,EAASJ,EAAGsB,EAAIxC,GAAI,EAC7B,EAmBAhB,EAAEwG,kBAAoBxG,EAAEyG,KAAO,WAC7B,IAAIjD,EAAIxC,EACNkB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAKF,EAAE2C,WACH3C,EAAEyB,SAAiB,IAAIjB,EAAKR,IAEhCsB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAK,EACtBd,EAAKpE,SAAW,EAET0G,EAAO9C,EAAEgE,OAAQhE,EAAE2D,OAAQnD,EAAKrE,UAAYmF,EAAId,EAAKpE,SAAW0C,IAR7C,IAAI0B,EAAKR,EAAEG,EASvC,EAsBArC,EAAE0G,cAAgB1G,EAAE2G,KAAO,WACzB,IAAIzE,EAAIC,KACNO,EAAOR,EAAEE,YACT/B,EAAI6B,EAAED,MAAMY,IAAI,GAChBW,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SAEZ,OAAW,IAAP+B,EACW,IAANA,EAEH6B,EAAE0E,QAAUC,EAAMnE,EAAMc,EAAIxC,GAAM,IAAI0B,EAAK,GAE3C,IAAIA,EAAKC,KAGXT,EAAEyB,SAAiBkD,EAAMnE,EAAMc,EAAK,EAAGxC,GAAI+C,MAAM,KAIrDrB,EAAKrE,UAAYmF,EAAK,EACtBd,EAAKpE,SAAW,EAGhB4D,EAAI,IAAIQ,EAAK,GAAGuB,MAAM/B,GAAGmD,IAAInD,EAAEgC,KAAK,IAAIiC,OAAOW,OAE/CpE,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETkB,EAAE6B,MAAM,GACjB,EAsBA/D,EAAE+G,wBAA0B/G,EAAEgH,MAAQ,WACpC,IAAIxD,EAAIxC,EACNkB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAIF,EAAE+E,IAAI,GAAW,IAAIvE,EAAKR,EAAE+C,GAAG,GAAK,EAAItC,KACvCT,EAAE2C,YAEPrB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAKpE,KAAKyB,IAAIzB,KAAK6C,IAAIC,EAAEK,GAAIL,EAAEuB,MAAQ,EACxDf,EAAKpE,SAAW,EAChBO,GAAW,EAEXqD,EAAIA,EAAE6B,MAAM7B,GAAG+B,MAAM,GAAGkC,OAAOjC,KAAKhC,GAEpCrD,GAAW,EACX6D,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETkB,EAAEgF,MAdiB,IAAIxE,EAAKR,EAerC,EAmBAlC,EAAEmH,sBAAwBnH,EAAEoH,MAAQ,WAClC,IAAI5D,EAAIxC,EACNkB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAKF,EAAE2C,YAAc3C,EAAEyB,SAAiB,IAAIjB,EAAKR,IAEjDsB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAK,EAAIpE,KAAKyB,IAAIzB,KAAK6C,IAAIC,EAAEK,GAAIL,EAAEuB,MAAQ,EAC5Df,EAAKpE,SAAW,EAChBO,GAAW,EAEXqD,EAAIA,EAAE6B,MAAM7B,GAAGgC,KAAK,GAAGiC,OAAOjC,KAAKhC,GAEnCrD,GAAW,EACX6D,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETkB,EAAEgF,KACX,EAsBAlH,EAAEqH,yBAA2BrH,EAAEsH,MAAQ,WACrC,IAAI9D,EAAIxC,EAAIuG,EAAKC,EACftF,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAKF,EAAE2C,WACH3C,EAAEK,GAAK,EAAU,IAAIG,EAAKR,EAAED,MAAMgD,GAAG,GAAK/C,EAAEG,EAAI,EAAIH,EAAEyB,SAAWzB,EAAIS,MAEzEa,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVkJ,EAAMtF,EAAEuB,KAEJrE,KAAKyB,IAAI2G,EAAKhE,GAAM,GAAKtB,EAAEK,EAAI,EAAUD,EAAS,IAAII,EAAKR,GAAIsB,EAAIxC,GAAI,IAE3E0B,EAAKrE,UAAYkJ,EAAMC,EAAMtF,EAAEK,EAE/BL,EAAI8C,EAAO9C,EAAEgC,KAAK,GAAI,IAAIxB,EAAK,GAAGuB,MAAM/B,GAAIqF,EAAM/D,EAAI,GAEtDd,EAAKrE,UAAYmF,EAAK,EACtBd,EAAKpE,SAAW,EAEhB4D,EAAIA,EAAEgF,KAENxE,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETkB,EAAE6B,MAAM,MArBW,IAAIrB,EAAKC,IAsBrC,EAwBA3C,EAAEyH,YAAczH,EAAE0H,KAAO,WACvB,IAAIC,EAAQtH,EACVmD,EAAIxC,EACJkB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAIF,EAAEyB,SAAiB,IAAIjB,EAAKR,IAEhC7B,EAAI6B,EAAED,MAAMY,IAAI,GAChBW,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,UAEC,IAAP+B,EAGQ,IAANA,IACFsH,EAASd,EAAMnE,EAAMc,EAAK,EAAGxC,GAAI+C,MAAM,KAChC1B,EAAIH,EAAEG,EACNsF,GAIF,IAAIjF,EAAKC,MAKlBD,EAAKrE,UAAYmF,EAAK,EACtBd,EAAKpE,SAAW,EAEhB4D,EAAIA,EAAEmD,IAAI,IAAI3C,EAAK,GAAGuB,MAAM/B,EAAE6B,MAAM7B,IAAIiE,OAAOjC,KAAK,IAAI4C,OAExDpE,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETkB,EAAE6B,MAAM,IACjB,EAqBA/D,EAAE4H,eAAiB5H,EAAE8G,KAAO,WAC1B,IAAI1G,EAAGqB,EAAGpB,EAAGmE,EAAGqD,EAAInD,EAAGvD,EAAGoG,EAAKO,EAC7B5F,EAAIC,KACJO,EAAOR,EAAEE,YACToB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SAEZ,GAAK4D,EAAE2C,WAOA,IAAI3C,EAAEyB,SACX,OAAO,IAAIjB,EAAKR,GACX,GAAIA,EAAED,MAAMgD,GAAG,IAAMzB,EAAK,GAAKzD,EAGpC,OAFAoB,EAAI0F,EAAMnE,EAAMc,EAAK,EAAGxC,GAAI+C,MAAM,MAChC1B,EAAIH,EAAEG,EACDlB,CACT,KAbmB,CACjB,IAAKe,EAAEG,EAAG,OAAO,IAAIK,EAAKC,KAC1B,GAAIa,EAAK,GAAKzD,EAGZ,OAFAoB,EAAI0F,EAAMnE,EAAMc,EAAK,EAAGxC,GAAI+C,MAAM,KAChC1B,EAAIH,EAAEG,EACDlB,CAEX,CAmBA,IAXAuB,EAAKrE,UAAYkJ,EAAM/D,EAAK,GAC5Bd,EAAKpE,SAAW,EAUX8B,EAFLC,EAAIjB,KAAKwB,IAAI,GAAI2G,EA92BN,EA82BuB,EAAI,GAE1BnH,IAAKA,EAAG8B,EAAIA,EAAEmD,IAAInD,EAAE6B,MAAM7B,GAAGgC,KAAK,GAAGiC,OAAOjC,KAAK,IAW7D,IATArF,GAAW,EAEX4C,EAAIrC,KAAKiC,KAAKkG,EAp3BH,GAq3BX/C,EAAI,EACJsD,EAAK5F,EAAE6B,MAAM7B,GACbf,EAAI,IAAIuB,EAAKR,GACb2F,EAAK3F,GAGS,IAAP9B,GAOL,GANAyH,EAAKA,EAAG9D,MAAM+D,GACdpD,EAAIvD,EAAE8C,MAAM4D,EAAGxC,IAAIb,GAAK,IAExBqD,EAAKA,EAAG9D,MAAM+D,QAGC,KAFf3G,EAAIuD,EAAER,KAAK2D,EAAGxC,IAAIb,GAAK,KAEjBrE,EAAEsB,GAAe,IAAKrB,EAAIqB,EAAGN,EAAEhB,EAAEC,KAAOsE,EAAEvE,EAAEC,IAAMA,MAO1D,OAJIC,IAAGc,EAAIA,EAAE4C,MAAM,GAAM1D,EAAI,IAE7BxB,GAAW,EAEJyD,EAASnB,EAAGuB,EAAKrE,UAAYmF,EAAId,EAAKpE,SAAW0C,GAAI,EAC9D,EAOAhB,EAAE6E,SAAW,WACX,QAAS1C,KAAKhC,CAChB,EAOAH,EAAE+H,UAAY/H,EAAEgI,MAAQ,WACtB,QAAS7F,KAAKhC,GAAKhB,EAAUgD,KAAKI,EA35BvB,GA25BuCJ,KAAKhC,EAAEL,OAAS,CACpE,EAOAE,EAAEiI,MAAQ,WACR,OAAQ9F,KAAKE,CACf,EAOArC,EAAEkI,WAAalI,EAAE4G,MAAQ,WACvB,OAAOzE,KAAKE,EAAI,CAClB,EAOArC,EAAEmI,WAAanI,EAAEoI,MAAQ,WACvB,OAAOjG,KAAKE,EAAI,CAClB,EAOArC,EAAE2D,OAAS,WACT,QAASxB,KAAKhC,GAAmB,IAAdgC,KAAKhC,EAAE,EAC5B,EAOAH,EAAEqI,SAAWrI,EAAEsI,GAAK,SAAUvF,GAC5B,OAAOZ,KAAKU,IAAIE,GAAK,CACvB,EAOA/C,EAAEuI,kBAAoBvI,EAAEiH,IAAM,SAAUlE,GACtC,OAAOZ,KAAKU,IAAIE,GAAK,CACvB,EAiCA/C,EAAEwI,UAAYxI,EAAEyI,IAAM,SAAUC,GAC9B,IAAIC,EAAUxI,EAAGyI,EAAavI,EAAGwI,EAAKC,EAAKrF,EAAItC,EAC7C4H,EAAM5G,KACNO,EAAOqG,EAAI3G,YACXoB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SAIZ,GAAY,MAARoK,EACFA,EAAO,IAAIhG,EAAK,IAChBiG,GAAW,MACN,CAKL,GAHAxI,GADAuI,EAAO,IAAIhG,EAAKgG,IACPvI,EAGLuI,EAAKrG,EAAI,IAAMlC,IAAMA,EAAE,IAAMuI,EAAKzD,GAAG,GAAI,OAAO,IAAIvC,EAAKC,KAE7DgG,EAAWD,EAAKzD,GAAG,GACrB,CAKA,GAHA9E,EAAI4I,EAAI5I,EAGJ4I,EAAI1G,EAAI,IAAMlC,IAAMA,EAAE,IAAM4I,EAAI9D,GAAG,GACrC,OAAO,IAAIvC,EAAKvC,IAAMA,EAAE,IAAK,IAAkB,GAAT4I,EAAI1G,EAASM,IAAMxC,EAAI,EAAI,KAKnE,GAAIwI,EACF,GAAIxI,EAAEL,OAAS,EACb+I,GAAM,MACD,CACL,IAAKxI,EAAIF,EAAE,GAAIE,EAAI,KAAO,GAAIA,GAAK,GACnCwI,EAAY,IAANxI,CACR,CAyBF,GAtBAxB,GAAW,EAEXiK,EAAME,EAAiBD,EADvBtF,EAAKD,EAnCK,GAqCVoF,EAAcD,EAAWM,EAAQvG,EAAMe,EAAK,IAAMuF,EAAiBN,EAAMjF,GAmBrE1C,GAhBJI,EAAI6D,EAAO8D,EAAKF,EAAanF,EAAI,IAgBPtD,EAAGE,EAAImD,EAAIxC,GAEnC,GAME,GAJA8H,EAAME,EAAiBD,EADvBtF,GAAM,IAENmF,EAAcD,EAAWM,EAAQvG,EAAMe,EAAK,IAAMuF,EAAiBN,EAAMjF,GACzEtC,EAAI6D,EAAO8D,EAAKF,EAAanF,EAAI,IAE5BoF,EAAK,EAGH3I,EAAeiB,EAAEhB,GAAG4E,MAAM1E,EAAI,EAAGA,EAAI,IAAM,GAAK,OACnDc,EAAImB,EAASnB,EAAGqC,EAAK,EAAG,IAG1B,KACF,QACOzC,EAAoBI,EAAEhB,EAAGE,GAAK,GAAIW,IAK7C,OAFAnC,GAAW,EAEJyD,EAASnB,EAAGqC,EAAIxC,EACzB,EAgDAhB,EAAEiE,MAAQjE,EAAEkJ,IAAM,SAAUnG,GAC1B,IAAI5C,EAAGoC,EAAGnC,EAAGqB,EAAGpB,EAAGqD,EAAKF,EAAIxC,EAAIkC,EAAIiG,EAAIC,EAAMjG,EAC5CjB,EAAIC,KACJO,EAAOR,EAAEE,YAKX,GAHAW,EAAI,IAAIL,EAAKK,IAGRb,EAAE/B,IAAM4C,EAAE5C,EAab,OAVK+B,EAAEG,GAAMU,EAAEV,EAGNH,EAAE/B,EAAG4C,EAAEV,GAAKU,EAAEV,EAKlBU,EAAI,IAAIL,EAAKK,EAAE5C,GAAK+B,EAAEG,IAAMU,EAAEV,EAAIH,EAAIS,KARzBI,EAAI,IAAIL,EAAKC,KAUxBI,EAIT,GAAIb,EAAEG,GAAKU,EAAEV,EAEX,OADAU,EAAEV,GAAKU,EAAEV,EACFH,EAAEgC,KAAKnB,GAShB,GANAG,EAAKhB,EAAE/B,EACPgD,EAAKJ,EAAE5C,EACPqD,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,UAGL4E,EAAG,KAAOC,EAAG,GAAI,CAGpB,GAAIA,EAAG,GAAIJ,EAAEV,GAAKU,EAAEV,MAGf,KAAIa,EAAG,GAIP,OAAO,IAAIR,EAAY,IAAP1B,GAAY,EAAI,GAJrB+B,EAAI,IAAIL,EAAKR,EAIU,CAEvC,OAAOrD,EAAWyD,EAASS,EAAGS,EAAIxC,GAAM+B,CAC1C,CAYA,GAPAR,EAAIpD,EAAU4D,EAAER,EA9qCL,GA+qCX4G,EAAKhK,EAAU+C,EAAEK,EA/qCN,GAirCXW,EAAKA,EAAG6B,QACR1E,EAAI8I,EAAK5G,EAGF,CAyBL,KAxBA6G,EAAO/I,EAAI,IAGTF,EAAI+C,EACJ7C,GAAKA,EACLqD,EAAMP,EAAGrD,SAETK,EAAIgD,EACJZ,EAAI4G,EACJzF,EAAMR,EAAGpD,QAQPO,GAFJD,EAAIhB,KAAKyB,IAAIzB,KAAKiC,KAAKmC,EArsCd,GAqsC8BE,GAAO,KAG5CrD,EAAID,EACJD,EAAEL,OAAS,GAIbK,EAAE4B,UACG3B,EAAIC,EAAGD,KAAMD,EAAEkJ,KAAK,GACzBlJ,EAAE4B,SAGJ,KAAO,CASL,KAHAqH,GAFAhJ,EAAI8C,EAAGpD,SACP4D,EAAMP,EAAGrD,WAEC4D,EAAMtD,GAEXA,EAAI,EAAGA,EAAIsD,EAAKtD,IACnB,GAAI8C,EAAG9C,IAAM+C,EAAG/C,GAAI,CAClBgJ,EAAOlG,EAAG9C,GAAK+C,EAAG/C,GAClB,KACF,CAGFC,EAAI,CACN,CAaA,IAXI+I,IACFjJ,EAAI+C,EACJA,EAAKC,EACLA,EAAKhD,EACL4C,EAAEV,GAAKU,EAAEV,GAGXqB,EAAMR,EAAGpD,OAIJM,EAAI+C,EAAGrD,OAAS4D,EAAKtD,EAAI,IAAKA,EAAG8C,EAAGQ,KAAS,EAGlD,IAAKtD,EAAI+C,EAAGrD,OAAQM,EAAIC,GAAI,CAE1B,GAAI6C,IAAK9C,GAAK+C,EAAG/C,GAAI,CACnB,IAAKqB,EAAIrB,EAAGqB,GAAiB,IAAZyB,IAAKzB,IAAWyB,EAAGzB,GAAK7B,EAAO,IAC9CsD,EAAGzB,GACLyB,EAAG9C,IAAMR,CACX,CAEAsD,EAAG9C,IAAM+C,EAAG/C,EACd,CAGA,KAAqB,IAAd8C,IAAKQ,IAAaR,EAAGoG,MAG5B,KAAiB,IAAVpG,EAAG,GAAUA,EAAGqG,UAAWhH,EAGlC,OAAKW,EAAG,IAERH,EAAE5C,EAAI+C,EACNH,EAAER,EAAIiH,EAAkBtG,EAAIX,GAErB1D,EAAWyD,EAASS,EAAGS,EAAIxC,GAAM+B,GALrB,IAAIL,EAAY,IAAP1B,GAAY,EAAI,EAM9C,EA2BAhB,EAAEzB,OAASyB,EAAEyJ,IAAM,SAAU1G,GAC3B,IAAI2G,EACFxH,EAAIC,KACJO,EAAOR,EAAEE,YAKX,OAHAW,EAAI,IAAIL,EAAKK,IAGRb,EAAE/B,IAAM4C,EAAEV,GAAKU,EAAE5C,IAAM4C,EAAE5C,EAAE,GAAW,IAAIuC,EAAKC,MAG/CI,EAAE5C,GAAK+B,EAAE/B,IAAM+B,EAAE/B,EAAE,GACfmC,EAAS,IAAII,EAAKR,GAAIQ,EAAKrE,UAAWqE,EAAKpE,WAIpDO,GAAW,EAEQ,GAAf6D,EAAKnE,QAIPmL,EAAI1E,EAAO9C,EAAGa,EAAEd,MAAO,EAAG,EAAG,IAC3BI,GAAKU,EAAEV,EAETqH,EAAI1E,EAAO9C,EAAGa,EAAG,EAAGL,EAAKnE,OAAQ,GAGnCmL,EAAIA,EAAE3F,MAAMhB,GAEZlE,GAAW,EAEJqD,EAAE+B,MAAMyF,GACjB,EASA1J,EAAE2J,mBAAqB3J,EAAE4J,IAAM,WAC7B,OAAOD,EAAmBxH,KAC5B,EAQAnC,EAAEgJ,iBAAmBhJ,EAAEkH,GAAK,WAC1B,OAAO8B,EAAiB7G,KAC1B,EAQAnC,EAAE6J,QAAU7J,EAAEoE,IAAM,WAClB,IAAIlC,EAAI,IAAIC,KAAKC,YAAYD,MAE7B,OADAD,EAAEG,GAAKH,EAAEG,EACFC,EAASJ,EAClB,EAwBAlC,EAAEkE,KAAOlE,EAAE8J,IAAM,SAAU/G,GACzB,IAAIgH,EAAO5J,EAAGoC,EAAGnC,EAAGC,EAAGqD,EAAKF,EAAIxC,EAAIkC,EAAIC,EACtCjB,EAAIC,KACJO,EAAOR,EAAEE,YAKX,GAHAW,EAAI,IAAIL,EAAKK,IAGRb,EAAE/B,IAAM4C,EAAE5C,EAWb,OARK+B,EAAEG,GAAMU,EAAEV,EAMLH,EAAE/B,IAAG4C,EAAI,IAAIL,EAAKK,EAAE5C,GAAK+B,EAAEG,IAAMU,EAAEV,EAAIH,EAAIS,MANnCI,EAAI,IAAIL,EAAKC,KAQxBI,EAIT,GAAIb,EAAEG,GAAKU,EAAEV,EAEX,OADAU,EAAEV,GAAKU,EAAEV,EACFH,EAAE+B,MAAMlB,GASjB,GANAG,EAAKhB,EAAE/B,EACPgD,EAAKJ,EAAE5C,EACPqD,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,UAGL4E,EAAG,KAAOC,EAAG,GAMhB,OAFKA,EAAG,KAAIJ,EAAI,IAAIL,EAAKR,IAElBrD,EAAWyD,EAASS,EAAGS,EAAIxC,GAAM+B,EAa1C,GAPA1C,EAAIlB,EAAU+C,EAAEK,EA96CL,GA+6CXA,EAAIpD,EAAU4D,EAAER,EA/6CL,GAi7CXW,EAAKA,EAAG6B,QACR3E,EAAIC,EAAIkC,EAGD,CAuBL,IArBInC,EAAI,GACND,EAAI+C,EACJ9C,GAAKA,EACLsD,EAAMP,EAAGrD,SAETK,EAAIgD,EACJZ,EAAIlC,EACJqD,EAAMR,EAAGpD,QAOPM,GAFJsD,GADArD,EAAIjB,KAAKiC,KAAKmC,EAl8CL,IAm8CCE,EAAMrD,EAAI,EAAIqD,EAAM,KAG5BtD,EAAIsD,EACJvD,EAAEL,OAAS,GAIbK,EAAE4B,UACK3B,KAAMD,EAAEkJ,KAAK,GACpBlJ,EAAE4B,SACJ,CAcA,KAZA2B,EAAMR,EAAGpD,SACTM,EAAI+C,EAAGrD,QAGO,IACZM,EAAIsD,EACJvD,EAAIgD,EACJA,EAAKD,EACLA,EAAK/C,GAIF4J,EAAQ,EAAG3J,GACd2J,GAAS7G,IAAK9C,GAAK8C,EAAG9C,GAAK+C,EAAG/C,GAAK2J,GAASnK,EAAO,EACnDsD,EAAG9C,IAAMR,EAUX,IAPImK,IACF7G,EAAG8G,QAAQD,KACTxH,GAKCmB,EAAMR,EAAGpD,OAAqB,GAAboD,IAAKQ,IAAYR,EAAGoG,MAK1C,OAHAvG,EAAE5C,EAAI+C,EACNH,EAAER,EAAIiH,EAAkBtG,EAAIX,GAErB1D,EAAWyD,EAASS,EAAGS,EAAIxC,GAAM+B,CAC1C,EASA/C,EAAE3B,UAAY2B,EAAEyD,GAAK,SAAUwG,GAC7B,IAAI5J,EACF6B,EAAIC,KAEN,QAAU,IAAN8H,GAAgBA,MAAQA,GAAW,IAANA,GAAiB,IAANA,EAAS,MAAMnJ,MAAM/B,EAAkBkL,GASnF,OAPI/H,EAAE/B,GACJE,EAAI6J,EAAahI,EAAE/B,GACf8J,GAAK/H,EAAEK,EAAI,EAAIlC,IAAGA,EAAI6B,EAAEK,EAAI,IAEhClC,EAAIsC,IAGCtC,CACT,EAQAL,EAAEmK,MAAQ,WACR,IAAIjI,EAAIC,KACNO,EAAOR,EAAEE,YAEX,OAAOE,EAAS,IAAII,EAAKR,GAAIA,EAAEK,EAAI,EAAGG,EAAKpE,SAC7C,EAkBA0B,EAAEoK,KAAOpK,EAAEqK,IAAM,WACf,IAAI7G,EAAIxC,EACNkB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAKF,EAAE2C,WACH3C,EAAEyB,SAAiB,IAAIjB,EAAKR,IAEhCsB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAKpE,KAAKyB,IAAIqB,EAAEK,EAAGL,EAAEuB,MA9iD3B,EA+iDXf,EAAKpE,SAAW,EAEhB4D,EA67DF,SAAcQ,EAAMR,GAClB,IAAI7B,EACFqD,EAAMxB,EAAE/B,EAAEL,OAEZ,GAAI4D,EAAM,EACR,OAAOxB,EAAEyB,SAAWzB,EAAI4B,EAAapB,EAAM,EAAGR,EAAGA,GASnD7B,GADAA,EAAI,IAAMjB,KAAK+G,KAAKzC,IACZ,GAAK,GAAS,EAAJrD,EAElB6B,EAAIA,EAAE6B,MAAM,EAAIH,EAAQ,EAAGvD,IAC3B6B,EAAI4B,EAAapB,EAAM,EAAGR,EAAGA,GAO7B,IAJA,IAAIoI,EACFjE,EAAK,IAAI3D,EAAK,GACd4D,EAAM,IAAI5D,EAAK,IACf6D,EAAM,IAAI7D,EAAK,IACVrC,KACLiK,EAASpI,EAAE6B,MAAM7B,GACjBA,EAAIA,EAAE6B,MAAMsC,EAAGnC,KAAKoG,EAAOvG,MAAMuC,EAAIvC,MAAMuG,GAAQrG,MAAMsC,MAG3D,OAAOrE,CACT,CA39DMkI,CAAK1H,EAAMyB,EAAiBzB,EAAMR,IAEtCQ,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETsB,EAASxE,EAAW,EAAIoE,EAAEkC,MAAQlC,EAAGsB,EAAIxC,GAAI,IAb1B,IAAI0B,EAAKC,IAcrC,EAeA3C,EAAEuK,WAAavK,EAAEmG,KAAO,WACtB,IAAI5B,EAAGC,EAAGf,EAAItC,EAAGsD,EAAKC,EACpBxC,EAAIC,KACJhC,EAAI+B,EAAE/B,EACNoC,EAAIL,EAAEK,EACNF,EAAIH,EAAEG,EACNK,EAAOR,EAAEE,YAGX,GAAU,IAANC,IAAYlC,IAAMA,EAAE,GACtB,OAAO,IAAIuC,GAAML,GAAKA,EAAI,KAAOlC,GAAKA,EAAE,IAAMwC,IAAMxC,EAAI+B,EAAI,KAgC9D,IA7BArD,GAAW,EAOF,IAJTwD,EAAIjD,KAAK+G,MAAMjE,KAIDG,GAAK,OACjBmC,EAAItE,EAAeC,IAEZL,OAASyC,GAAK,GAAK,IAAGiC,GAAK,KAClCnC,EAAIjD,KAAK+G,KAAK3B,GACdjC,EAAIpD,GAAWoD,EAAI,GAAK,IAAMA,EAAI,GAAKA,EAAI,GAS3CpB,EAAI,IAAIuB,EANN8B,EADEnC,GAAK,IACH,KAAOE,GAEXiC,EAAInC,EAAEyC,iBACAC,MAAM,EAAGP,EAAE3C,QAAQ,KAAO,GAAKU,IAKvCpB,EAAI,IAAIuB,EAAKL,EAAEwB,YAGjBJ,GAAMlB,EAAIG,EAAKrE,WAAa,IAQ1B,GAHA8C,GADAuD,EAAIvD,GACE+C,KAAKc,EAAO9C,EAAGwC,EAAGjB,EAAK,EAAG,IAAIM,MAAM,IAGtC7D,EAAewE,EAAEvE,GAAG4E,MAAM,EAAGtB,MAASe,EAAItE,EAAeiB,EAAEhB,IAAI4E,MAAM,EAAGtB,GAAK,CAK/E,GAAS,SAJTe,EAAIA,EAAEO,MAAMtB,EAAK,EAAGA,EAAK,MAILgB,GAAY,QAALD,GAepB,EAICA,KAAOA,EAAEO,MAAM,IAAqB,KAAfP,EAAE1C,OAAO,MAGlCQ,EAASnB,EAAGoB,EAAI,EAAG,GACnBgC,GAAKpD,EAAE4C,MAAM5C,GAAG8D,GAAG/C,IAGrB,KACF,CAvBE,IAAKuC,IACHnC,EAASoC,EAAGnC,EAAI,EAAG,GAEfmC,EAAEX,MAAMW,GAAGO,GAAG/C,IAAI,CACpBf,EAAIuD,EACJ,KACF,CAGFjB,GAAM,EACNgB,EAAM,CAcV,CAKF,OAFA5F,GAAW,EAEJyD,EAASnB,EAAGoB,EAAGG,EAAKpE,SAAUiG,EACvC,EAgBAvE,EAAEwK,QAAUxK,EAAEyK,IAAM,WAClB,IAAIjH,EAAIxC,EACNkB,EAAIC,KACJO,EAAOR,EAAEE,YAEX,OAAKF,EAAE2C,WACH3C,EAAEyB,SAAiB,IAAIjB,EAAKR,IAEhCsB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SACVoE,EAAKrE,UAAYmF,EAAK,GACtBd,EAAKpE,SAAW,GAEhB4D,EAAIA,EAAEmI,OACJhI,EAAI,EACNH,EAAI8C,EAAO9C,EAAG,IAAIQ,EAAK,GAAGuB,MAAM/B,EAAE6B,MAAM7B,IAAIiE,OAAQ3C,EAAK,GAAI,GAE7Dd,EAAKrE,UAAYmF,EACjBd,EAAKpE,SAAW0C,EAETsB,EAAqB,GAAZxE,GAA6B,GAAZA,EAAgBoE,EAAEkC,MAAQlC,EAAGsB,EAAIxC,GAAI,IAf5C,IAAI0B,EAAKC,IAgBrC,EAwBA3C,EAAE+D,MAAQ/D,EAAE0K,IAAM,SAAU3H,GAC1B,IAAIgH,EAAOxH,EAAGnC,EAAGC,EAAGc,EAAGwJ,EAAIjG,EAAG1B,EAAKC,EACjCf,EAAIC,KACJO,EAAOR,EAAEE,YACTc,EAAKhB,EAAE/B,EACPgD,GAAMJ,EAAI,IAAIL,EAAKK,IAAI5C,EAKzB,GAHA4C,EAAEV,GAAKH,EAAEG,GAGJa,IAAOA,EAAG,KAAOC,IAAOA,EAAG,GAE9B,OAAO,IAAIT,GAAMK,EAAEV,GAAKa,IAAOA,EAAG,KAAOC,GAAMA,IAAOA,EAAG,KAAOD,EAI5DP,IAICO,GAAOC,EAAqB,EAANJ,EAAEV,EAAZU,EAAEV,EAAI,GAoBzB,IAjBAE,EAAIpD,EAAU+C,EAAEK,EAhvDL,GAgvDqBpD,EAAU4D,EAAER,EAhvDjC,IAivDXS,EAAME,EAAGpD,SACTmD,EAAME,EAAGrD,UAIPqB,EAAI+B,EACJA,EAAKC,EACLA,EAAKhC,EACLwJ,EAAK3H,EACLA,EAAMC,EACNA,EAAM0H,GAIRxJ,EAAI,GAECf,EADLuK,EAAK3H,EAAMC,EACE7C,KAAMe,EAAEkI,KAAK,GAG1B,IAAKjJ,EAAI6C,IAAO7C,GAAK,GAAI,CAEvB,IADA2J,EAAQ,EACH1J,EAAI2C,EAAM5C,EAAGC,EAAID,GACpBsE,EAAIvD,EAAEd,GAAK8C,EAAG/C,GAAK8C,EAAG7C,EAAID,EAAI,GAAK2J,EACnC5I,EAAEd,KAAOqE,EAAI9E,EAAO,EACpBmK,EAAQrF,EAAI9E,EAAO,EAGrBuB,EAAEd,IAAMc,EAAEd,GAAK0J,GAASnK,EAAO,CACjC,CAGA,MAAQuB,IAAIwJ,IAAMxJ,EAAEmI,MAQpB,OANIS,IAASxH,EACRpB,EAAEoI,QAEPxG,EAAE5C,EAAIgB,EACN4B,EAAER,EAAIiH,EAAkBrI,EAAGoB,GAEpB1D,EAAWyD,EAASS,EAAGL,EAAKrE,UAAWqE,EAAKpE,UAAYyE,CACjE,EAaA/C,EAAE4K,SAAW,SAAUnH,EAAIzC,GACzB,OAAO6J,EAAe1I,KAAM,EAAGsB,EAAIzC,EACrC,EAaAhB,EAAE8K,gBAAkB9K,EAAE+K,KAAO,SAAU5F,EAAInE,GACzC,IAAIkB,EAAIC,KACNO,EAAOR,EAAEE,YAGX,OADAF,EAAI,IAAIQ,EAAKR,QACF,IAAPiD,EAAsBjD,GAE1BvB,EAAWwE,EAAI,EAAGnH,QAEP,IAAPgD,EAAeA,EAAK0B,EAAKpE,SACxBqC,EAAWK,EAAI,EAAG,GAEhBsB,EAASJ,EAAGiD,EAAKjD,EAAEK,EAAI,EAAGvB,GACnC,EAWAhB,EAAE8E,cAAgB,SAAUK,EAAInE,GAC9B,IAAIR,EACF0B,EAAIC,KACJO,EAAOR,EAAEE,YAcX,YAZW,IAAP+C,EACF3E,EAAMwK,EAAe9I,GAAG,IAExBvB,EAAWwE,EAAI,EAAGnH,QAEP,IAAPgD,EAAeA,EAAK0B,EAAKpE,SACxBqC,EAAWK,EAAI,EAAG,GAGvBR,EAAMwK,EADN9I,EAAII,EAAS,IAAII,EAAKR,GAAIiD,EAAK,EAAGnE,IACV,EAAMmE,EAAK,IAG9BjD,EAAE0E,UAAY1E,EAAEyB,SAAW,IAAMnD,EAAMA,CAChD,EAmBAR,EAAEiL,QAAU,SAAU9F,EAAInE,GACxB,IAAIR,EAAKuC,EACPb,EAAIC,KACJO,EAAOR,EAAEE,YAgBX,YAdW,IAAP+C,EACF3E,EAAMwK,EAAe9I,IAErBvB,EAAWwE,EAAI,EAAGnH,QAEP,IAAPgD,EAAeA,EAAK0B,EAAKpE,SACxBqC,EAAWK,EAAI,EAAG,GAGvBR,EAAMwK,EADNjI,EAAIT,EAAS,IAAII,EAAKR,GAAIiD,EAAKjD,EAAEK,EAAI,EAAGvB,IAChB,EAAOmE,EAAKpC,EAAER,EAAI,IAKrCL,EAAE0E,UAAY1E,EAAEyB,SAAW,IAAMnD,EAAMA,CAChD,EAcAR,EAAEkL,WAAa,SAAUC,GACvB,IAAIhL,EAAGiL,EAAIC,EAAIC,EAAI/I,EAAGlC,EAAGmE,EAAG+G,EAAIC,EAAIhI,EAAIkG,EAAGvI,EACzCe,EAAIC,KACJe,EAAKhB,EAAE/B,EACPuC,EAAOR,EAAEE,YAEX,IAAKc,EAAI,OAAO,IAAIR,EAAKR,GAUzB,GARAsJ,EAAKJ,EAAK,IAAI1I,EAAK,GACnB2I,EAAKE,EAAK,IAAI7I,EAAK,GAInBrC,GADAkC,GADApC,EAAI,IAAIuC,EAAK2I,IACP9I,EAAI2H,EAAahH,GAAMhB,EAAEK,EAAI,GAh6DxB,EAk6DXpC,EAAEA,EAAE,GAAKb,EAAQ,GAAIe,EAAI,EAl6Dd,EAk6D6BA,EAAIA,GAEhC,MAAR8K,EAGFA,EAAO5I,EAAI,EAAIpC,EAAIqL,MACd,CAEL,KADAhH,EAAI,IAAI9B,EAAKyI,IACNnD,SAAWxD,EAAE8D,GAAGkD,GAAK,MAAM1K,MAAM/B,EAAkByF,GAC1D2G,EAAO3G,EAAE5B,GAAGzC,GAAMoC,EAAI,EAAIpC,EAAIqL,EAAMhH,CACtC,CAOA,IALA3F,GAAW,EACX2F,EAAI,IAAI9B,EAAKxC,EAAegD,IAC5BM,EAAKd,EAAKrE,UACVqE,EAAKrE,UAAYkE,EAj7DN,EAi7DUW,EAAGpD,OAAoB,EAG1C4J,EAAI1E,EAAOR,EAAGrE,EAAG,EAAG,EAAG,GAEH,IADpBmL,EAAKF,EAAGlH,KAAKwF,EAAE3F,MAAMsH,KACdxI,IAAIsI,IACXC,EAAKC,EACLA,EAAKC,EACLA,EAAKE,EACLA,EAAKD,EAAGrH,KAAKwF,EAAE3F,MAAMuH,IACrBC,EAAKD,EACLA,EAAKnL,EACLA,EAAIqE,EAAEP,MAAMyF,EAAE3F,MAAMuH,IACpB9G,EAAI8G,EAeN,OAZAA,EAAKtG,EAAOmG,EAAKlH,MAAMmH,GAAKC,EAAI,EAAG,EAAG,GACtCE,EAAKA,EAAGrH,KAAKoH,EAAGvH,MAAMyH,IACtBJ,EAAKA,EAAGlH,KAAKoH,EAAGvH,MAAMsH,IACtBE,EAAGlJ,EAAImJ,EAAGnJ,EAAIH,EAAEG,EAGhBlB,EAAI6D,EAAOwG,EAAIH,EAAI9I,EAAG,GAAG0B,MAAM/B,GAAGD,MAAMY,IAAImC,EAAOuG,EAAIH,EAAI7I,EAAG,GAAG0B,MAAM/B,GAAGD,OAAS,EAC7E,CAACuJ,EAAIH,GAAM,CAACE,EAAIH,GAEtB1I,EAAKrE,UAAYmF,EACjB3E,GAAW,EAEJsC,CACT,EAaAnB,EAAEyL,cAAgBzL,EAAE0L,MAAQ,SAAUjI,EAAIzC,GACxC,OAAO6J,EAAe1I,KAAM,GAAIsB,EAAIzC,EACtC,EAmBAhB,EAAE2L,UAAY,SAAU5I,EAAG/B,GACzB,IAAIkB,EAAIC,KACNO,EAAOR,EAAEE,YAIX,GAFAF,EAAI,IAAIQ,EAAKR,GAEJ,MAALa,EAAW,CAGb,IAAKb,EAAE/B,EAAG,OAAO+B,EAEjBa,EAAI,IAAIL,EAAK,GACb1B,EAAK0B,EAAKpE,QACZ,KAAO,CASL,GARAyE,EAAI,IAAIL,EAAKK,QACF,IAAP/B,EACFA,EAAK0B,EAAKpE,SAEVqC,EAAWK,EAAI,EAAG,IAIfkB,EAAE/B,EAAG,OAAO4C,EAAEV,EAAIH,EAAIa,EAG3B,IAAKA,EAAE5C,EAEL,OADI4C,EAAEV,IAAGU,EAAEV,EAAIH,EAAEG,GACVU,CAEX,CAeA,OAZIA,EAAE5C,EAAE,IACNtB,GAAW,EACXqD,EAAI8C,EAAO9C,EAAGa,EAAG,EAAG/B,EAAI,GAAG+C,MAAMhB,GACjClE,GAAW,EACXyD,EAASJ,KAITa,EAAEV,EAAIH,EAAEG,EACRH,EAAIa,GAGCb,CACT,EAQAlC,EAAE4L,SAAW,WACX,OAAQzJ,IACV,EAaAnC,EAAE6L,QAAU,SAAUpI,EAAIzC,GACxB,OAAO6J,EAAe1I,KAAM,EAAGsB,EAAIzC,EACrC,EA8CAhB,EAAE8L,QAAU9L,EAAET,IAAM,SAAUwD,GAC5B,IAAIR,EAAGlC,EAAGmD,EAAIrC,EAAGH,EAAIqB,EACnBH,EAAIC,KACJO,EAAOR,EAAEE,YACT2J,IAAOhJ,EAAI,IAAIL,EAAKK,IAGtB,IAAKb,EAAE/B,IAAM4C,EAAE5C,IAAM+B,EAAE/B,EAAE,KAAO4C,EAAE5C,EAAE,GAAI,OAAO,IAAIuC,EAAKpD,GAAS4C,EAAG6J,IAIpE,IAFA7J,EAAI,IAAIQ,EAAKR,IAEP+C,GAAG,GAAI,OAAO/C,EAKpB,GAHAsB,EAAKd,EAAKrE,UACV2C,EAAK0B,EAAKpE,SAENyE,EAAEkC,GAAG,GAAI,OAAO3C,EAASJ,EAAGsB,EAAIxC,GAMpC,IAHAuB,EAAIpD,EAAU4D,EAAER,EAvnEL,KA0nEFQ,EAAE5C,EAAEL,OAAS,IAAMO,EAAI0L,EAAK,GAAKA,EAAKA,IAznE5B,iBA2nEjB,OADA5K,EAAI6K,EAAOtJ,EAAMR,EAAG7B,EAAGmD,GAChBT,EAAEV,EAAI,EAAI,IAAIK,EAAK,GAAG2C,IAAIlE,GAAKmB,EAASnB,EAAGqC,EAAIxC,GAMxD,IAHAqB,EAAIH,EAAEG,GAGE,EAAG,CAGT,GAAIE,EAAIQ,EAAE5C,EAAEL,OAAS,EAAG,OAAO,IAAI4C,EAAKC,KAMxC,GAHoB,IAAN,EAATI,EAAE5C,EAAEoC,MAAcF,EAAI,GAGhB,GAAPH,EAAEK,GAAoB,GAAVL,EAAE/B,EAAE,IAAyB,GAAd+B,EAAE/B,EAAEL,OAEjC,OADAoC,EAAEG,EAAIA,EACCH,CAEX,CAcA,OAPAK,EAAS,IADTlC,EAAIf,GAAS4C,EAAG6J,KACDlH,SAASxE,GAEpB,IAAIqC,EAAKrC,EAAI,IAAIkC,EADjBpD,EAAU4M,GAAM3M,KAAKqJ,IAAI,KAAOvI,EAAegC,EAAE/B,IAAMf,KAAKlB,KAAOgE,EAAEK,EAAI,KAMrEG,EAAK/D,KAAO,GAAK4D,EAAIG,EAAKhE,KAAO,EAAU,IAAIgE,EAAKH,EAAI,EAAIF,EAAI,EAAI,IAE5ExD,GAAW,EACX6D,EAAKpE,SAAW4D,EAAEG,EAAI,EAMtBhC,EAAIjB,KAAKwB,IAAI,IAAK2B,EAAI,IAAIzC,SAG1BqB,EAAIwI,EAAmB5G,EAAEgB,MAAMiF,EAAiB9G,EAAGsB,EAAKnD,IAAKmD,IAGvDrD,GAOAY,GAJJI,EAAImB,EAASnB,EAAGqC,EAAK,EAAG,IAIErD,EAAGqD,EAAIxC,KAC/BuB,EAAIiB,EAAK,IAMJtD,GAHLiB,EAAImB,EAASqH,EAAmB5G,EAAEgB,MAAMiF,EAAiB9G,EAAGK,EAAIlC,IAAKkC,GAAIA,EAAI,EAAG,IAG1DpC,GAAG4E,MAAMvB,EAAK,EAAGA,EAAK,IAAM,GAAK,OACrDrC,EAAImB,EAASnB,EAAGqC,EAAK,EAAG,KAK9BrC,EAAEkB,EAAIA,EACNxD,GAAW,EACX6D,EAAKpE,SAAW0C,EAETsB,EAASnB,EAAGqC,EAAIxC,GACzB,EAcAhB,EAAEiM,YAAc,SAAUxI,EAAIzC,GAC5B,IAAIR,EACF0B,EAAIC,KACJO,EAAOR,EAAEE,YAcX,YAZW,IAAPqB,EACFjD,EAAMwK,EAAe9I,EAAGA,EAAEK,GAAKG,EAAKlE,UAAY0D,EAAEK,GAAKG,EAAKjE,WAE5DkC,EAAW8C,EAAI,EAAGzF,QAEP,IAAPgD,EAAeA,EAAK0B,EAAKpE,SACxBqC,EAAWK,EAAI,EAAG,GAGvBR,EAAMwK,EADN9I,EAAII,EAAS,IAAII,EAAKR,GAAIuB,EAAIzC,GACNyC,GAAMvB,EAAEK,GAAKL,EAAEK,GAAKG,EAAKlE,SAAUiF,IAGtDvB,EAAE0E,UAAY1E,EAAEyB,SAAW,IAAMnD,EAAMA,CAChD,EAiBAR,EAAEkM,oBAAsBlM,EAAEmM,KAAO,SAAU1I,EAAIzC,GAC7C,IACE0B,EADMP,KACGC,YAYX,YAVW,IAAPqB,GACFA,EAAKf,EAAKrE,UACV2C,EAAK0B,EAAKpE,WAEVqC,EAAW8C,EAAI,EAAGzF,QAEP,IAAPgD,EAAeA,EAAK0B,EAAKpE,SACxBqC,EAAWK,EAAI,EAAG,IAGlBsB,EAAS,IAAII,EAbZP,MAaqBsB,EAAIzC,EACnC,EAUAhB,EAAE6D,SAAW,WACX,IAAI3B,EAAIC,KACNO,EAAOR,EAAEE,YACT5B,EAAMwK,EAAe9I,EAAGA,EAAEK,GAAKG,EAAKlE,UAAY0D,EAAEK,GAAKG,EAAKjE,UAE9D,OAAOyD,EAAE0E,UAAY1E,EAAEyB,SAAW,IAAMnD,EAAMA,CAChD,EAOAR,EAAEoM,UAAYpM,EAAEqM,MAAQ,WACtB,OAAO/J,EAAS,IAAIH,KAAKC,YAAYD,MAAOA,KAAKI,EAAI,EAAG,EAC1D,EAQAvC,EAAEsM,QAAUtM,EAAEuM,OAAS,WACrB,IAAIrK,EAAIC,KACNO,EAAOR,EAAEE,YACT5B,EAAMwK,EAAe9I,EAAGA,EAAEK,GAAKG,EAAKlE,UAAY0D,EAAEK,GAAKG,EAAKjE,UAE9D,OAAOyD,EAAE0E,QAAU,IAAMpG,EAAMA,CACjC,EAkNA,IAAIwE,EAAS,WAGX,SAASwH,EAAgBtK,EAAG7B,EAAGqI,GAC7B,IAAI+D,EACF1C,EAAQ,EACR3J,EAAI8B,EAAEpC,OAER,IAAKoC,EAAIA,EAAE6C,QAAS3E,KAClBqM,EAAOvK,EAAE9B,GAAKC,EAAI0J,EAClB7H,EAAE9B,GAAKqM,EAAO/D,EAAO,EACrBqB,EAAQ0C,EAAO/D,EAAO,EAKxB,OAFIqB,GAAO7H,EAAE8H,QAAQD,GAEd7H,CACT,CAEA,SAASwK,EAAQC,EAAGC,EAAGC,EAAIC,GACzB,IAAI1M,EAAGe,EAEP,GAAI0L,GAAMC,EACR3L,EAAI0L,EAAKC,EAAK,GAAK,OAEnB,IAAK1M,EAAIe,EAAI,EAAGf,EAAIyM,EAAIzM,IACtB,GAAIuM,EAAEvM,IAAMwM,EAAExM,GAAI,CAChBe,EAAIwL,EAAEvM,GAAKwM,EAAExM,GAAK,GAAK,EACvB,KACF,CAIJ,OAAOe,CACT,CAEA,SAAS4L,EAASJ,EAAGC,EAAGC,EAAInE,GAI1B,IAHA,IAAItI,EAAI,EAGDyM,KACLF,EAAEE,IAAOzM,EACTA,EAAIuM,EAAEE,GAAMD,EAAEC,GAAM,EAAI,EACxBF,EAAEE,GAAMzM,EAAIsI,EAAOiE,EAAEE,GAAMD,EAAEC,GAI/B,MAAQF,EAAE,IAAMA,EAAE7M,OAAS,GAAI6M,EAAEpD,OACnC,CAEA,OAAO,SAAUrH,EAAGa,EAAGS,EAAIxC,EAAImE,EAAIuD,GACjC,IAAI7F,EAAKN,EAAGnC,EAAGC,EAAG2M,EAASC,EAAMC,EAAMC,EAAOzD,EAAG0D,EAAIC,EAAKC,EAAMC,EAAM9J,EAAIiB,EAAG8I,EAAIC,EAAIC,EACnFC,EAAIC,EACJlL,EAAOR,EAAEE,YACTyL,EAAO3L,EAAEG,GAAKU,EAAEV,EAAI,GAAK,EACzBa,EAAKhB,EAAE/B,EACPgD,EAAKJ,EAAE5C,EAGT,IAAK+C,IAAOA,EAAG,KAAOC,IAAOA,EAAG,GAE9B,OAAO,IAAIT,EACRR,EAAEG,GAAMU,EAAEV,IAAMa,GAAKC,GAAMD,EAAG,IAAMC,EAAG,GAAMA,GAG9CD,GAAe,GAATA,EAAG,KAAYC,EAAY,EAAP0K,EAAWA,EAAO,EAHQlL,KAsBxD,IAhBI+F,GACFsE,EAAU,EACVzK,EAAIL,EAAEK,EAAIQ,EAAER,IAEZmG,EAAO9I,EACPoN,EAvkFO,EAwkFPzK,EAAIpD,EAAU+C,EAAEK,EAAIyK,GAAW7N,EAAU4D,EAAER,EAAIyK,IAGjDW,EAAKxK,EAAGrD,OACR2N,EAAKvK,EAAGpD,OAERsN,GADA1D,EAAI,IAAIhH,EAAKmL,IACN1N,EAAI,GAINC,EAAI,EAAG+C,EAAG/C,KAAO8C,EAAG9C,IAAM,GAAIA,KAanC,GAXI+C,EAAG/C,IAAM8C,EAAG9C,IAAM,IAAImC,IAEhB,MAANiB,GACFC,EAAKD,EAAKd,EAAKrE,UACf2C,EAAK0B,EAAKpE,UAEVmF,EADS0B,EACJ3B,GAAMtB,EAAEK,EAAIQ,EAAER,GAAK,EAEnBiB,EAGHC,EAAK,EACP2J,EAAG/D,KAAK,GACR4D,GAAO,MACF,CAOL,GAJAxJ,EAAKA,EAAKuJ,EAAU,EAAI,EACxB5M,EAAI,EAGM,GAANuN,EAAS,CAMX,IALAtN,EAAI,EACJ8C,EAAKA,EAAG,GACRM,KAGQrD,EAAIqN,GAAMpN,IAAMoD,IAAMrD,IAC5BsE,EAAIrE,EAAIqI,GAAQxF,EAAG9C,IAAM,GACzBgN,EAAGhN,GAAKsE,EAAIvB,EAAK,EACjB9C,EAAIqE,EAAIvB,EAAK,EAGf8J,EAAO5M,GAAKD,EAAIqN,CAGlB,KAAO,CAiBL,KAdApN,EAAIqI,GAAQvF,EAAG,GAAK,GAAK,GAEjB,IACNA,EAAKqJ,EAAgBrJ,EAAI9C,EAAGqI,GAC5BxF,EAAKsJ,EAAgBtJ,EAAI7C,EAAGqI,GAC5BiF,EAAKxK,EAAGrD,OACR2N,EAAKvK,EAAGpD,QAGV0N,EAAKG,EAELL,GADAD,EAAMnK,EAAG6B,MAAM,EAAG4I,IACP7N,OAGJwN,EAAOK,GAAKN,EAAIC,KAAU,GAEjCM,EAAKzK,EAAG4B,SACLiF,QAAQ,GACX0D,EAAMvK,EAAG,GAELA,EAAG,IAAMuF,EAAO,KAAKgF,EAEzB,GACErN,EAAI,GAGJwC,EAAM6J,EAAQvJ,EAAIkK,EAAKM,EAAIL,IAGjB,GAGRC,EAAOF,EAAI,GACPM,GAAML,IAAMC,EAAOA,EAAO7E,GAAQ2E,EAAI,IAAM,KAGhDhN,EAAIkN,EAAOG,EAAM,GAUT,GACFrN,GAAKqI,IAAMrI,EAAIqI,EAAO,GAWf,IAHX7F,EAAM6J,EALNQ,EAAOV,EAAgBrJ,EAAI9C,EAAGqI,GAKV2E,EAJpBF,EAAQD,EAAKpN,OACbwN,EAAOD,EAAIvN,WAOTO,IAGA0M,EAASG,EAAMS,EAAKR,EAAQS,EAAKzK,EAAIgK,EAAOzE,MAOrC,GAALrI,IAAQwC,EAAMxC,EAAI,GACtB6M,EAAO/J,EAAG4B,UAGZoI,EAAQD,EAAKpN,QACDwN,GAAMJ,EAAKlD,QAAQ,GAG/B+C,EAASM,EAAKH,EAAMI,EAAM5E,IAGd,GAAR7F,IAIFA,EAAM6J,EAAQvJ,EAAIkK,EAAKM,EAHvBL,EAAOD,EAAIvN,SAMD,IACRO,IAGA0M,EAASM,EAAKM,EAAKL,EAAOM,EAAKzK,EAAImK,EAAM5E,IAI7C4E,EAAOD,EAAIvN,QACM,IAAR+C,IACTxC,IACAgN,EAAM,CAAC,IAITD,EAAGhN,KAAOC,EAGNwC,GAAOwK,EAAI,GACbA,EAAIC,KAAUpK,EAAGsK,IAAO,GAExBH,EAAM,CAACnK,EAAGsK,IACVF,EAAO,UAGDE,IAAOC,QAAiB,IAAXJ,EAAI,KAAkB5J,KAE7CwJ,OAAkB,IAAXI,EAAI,EACb,CAGKD,EAAG,IAAIA,EAAG7D,OACjB,CAGA,GAAe,GAAXyD,EACFtD,EAAEnH,EAAIA,EACN1E,EAAUoP,MACL,CAGL,IAAK7M,EAAI,EAAGC,EAAI+M,EAAG,GAAI/M,GAAK,GAAIA,GAAK,GAAID,IACzCsJ,EAAEnH,EAAInC,EAAImC,EAAIyK,EAAU,EAExB1K,EAASoH,EAAGvE,EAAK3B,EAAKkG,EAAEnH,EAAI,EAAIiB,EAAIxC,EAAIiM,EAC1C,CAEA,OAAOvD,CACT,CACD,CArQY,GA4QZ,SAASpH,EAASJ,EAAGuB,EAAIzC,EAAI8M,GAC5B,IAAIC,EAAQ3N,EAAGqB,EAAGpB,EAAGe,EAAI4M,EAASvN,EAAGyC,EAAI+K,EACvCvL,EAAOR,EAAEE,YAGX8L,EAAK,GAAU,MAANzK,EAAY,CAInB,KAHAP,EAAKhB,EAAE/B,GAGE,OAAO+B,EAWhB,IAAK6L,EAAS,EAAG1N,EAAI6C,EAAG,GAAI7C,GAAK,GAAIA,GAAK,GAAI0N,IAI9C,IAHA3N,EAAIqD,EAAKsK,GAGD,EACN3N,GAnyFO,EAoyFPqB,EAAIgC,EAIJrC,GAHAX,EAAIyC,EAAG+K,EAAM,IAGJ3O,EAAQ,GAAIyO,EAAStM,EAAI,GAAK,GAAK,OAI5C,IAFAwM,EAAM7O,KAAKiC,MAAMjB,EAAI,GA1yFd,MA2yFPC,EAAI6C,EAAGpD,QACO,CACZ,IAAIgO,EASF,MAAMI,EANN,KAAO7N,KAAO4N,GAAM/K,EAAGmG,KAAK,GAC5B5I,EAAIW,EAAK,EACT2M,EAAS,EAETtM,GADArB,GAnzFG,KAozFgB,CAIvB,KAAO,CAIL,IAHAK,EAAIJ,EAAI6C,EAAG+K,GAGNF,EAAS,EAAG1N,GAAK,GAAIA,GAAK,GAAI0N,IAUnC3M,GAHAK,GAJArB,GA/zFK,KAm0Fc2N,GAGV,EAAI,EAAItN,EAAInB,EAAQ,GAAIyO,EAAStM,EAAI,GAAK,GAAK,CAC1D,CAmBF,GAfAqM,EAAcA,GAAerK,EAAK,QAChB,IAAhBP,EAAG+K,EAAM,KAAkBxM,EAAI,EAAIhB,EAAIA,EAAInB,EAAQ,GAAIyO,EAAStM,EAAI,IAMtEuM,EAAUhN,EAAK,GACVI,GAAM0M,KAAuB,GAAN9M,GAAWA,IAAOkB,EAAEG,EAAI,EAAI,EAAI,IACxDjB,EAAK,GAAW,GAANA,IAAkB,GAANJ,GAAW8M,GAAqB,GAAN9M,IAG9CZ,EAAI,EAAIqB,EAAI,EAAIhB,EAAInB,EAAQ,GAAIyO,EAAStM,GAAK,EAAIyB,EAAG+K,EAAM,IAAM,GAAM,GACvEjN,IAAOkB,EAAEG,EAAI,EAAI,EAAI,IAEvBoB,EAAK,IAAMP,EAAG,GAgBhB,OAfAA,EAAGpD,OAAS,EACRkO,GAGFvK,GAAMvB,EAAEK,EAAI,EAGZW,EAAG,GAAK5D,EAAQ,IAl2FX,EAk2F2BmE,EAl2F3B,MAm2FLvB,EAAEK,GAAKkB,GAAM,GAIbP,EAAG,GAAKhB,EAAEK,EAAI,EAGTL,EAiBT,GAbS,GAAL9B,GACF8C,EAAGpD,OAASmO,EACZ5N,EAAI,EACJ4N,MAEA/K,EAAGpD,OAASmO,EAAM,EAClB5N,EAAIf,EAAQ,GAp3FL,EAo3FoBc,GAI3B8C,EAAG+K,GAAOxM,EAAI,GAAKhB,EAAInB,EAAQ,GAAIyO,EAAStM,GAAKnC,EAAQ,GAAImC,GAAK,GAAKpB,EAAI,GAGzE2N,EACF,OAAS,CAGP,GAAW,GAAPC,EAAU,CAGZ,IAAK7N,EAAI,EAAGqB,EAAIyB,EAAG,GAAIzB,GAAK,GAAIA,GAAK,GAAIrB,IAEzC,IADAqB,EAAIyB,EAAG,IAAM7C,EACRA,EAAI,EAAGoB,GAAK,GAAIA,GAAK,GAAIpB,IAG1BD,GAAKC,IACP6B,EAAEK,IACEW,EAAG,IAAMtD,IAAMsD,EAAG,GAAK,IAG7B,KACF,CAEE,GADAA,EAAG+K,IAAQ5N,EACP6C,EAAG+K,IAAQrO,EAAM,MACrBsD,EAAG+K,KAAS,EACZ5N,EAAI,CAER,CAIF,IAAKD,EAAI8C,EAAGpD,OAAoB,IAAZoD,IAAK9C,IAAW8C,EAAGoG,KACzC,CAqBA,OAnBIzK,IAGEqD,EAAEK,EAAIG,EAAK/D,MAGbuD,EAAE/B,EAAI,KACN+B,EAAEK,EAAII,KAGGT,EAAEK,EAAIG,EAAKhE,OAGpBwD,EAAEK,EAAI,EACNL,EAAE/B,EAAI,CAAC,KAKJ+B,CACT,CAGA,SAAS8I,EAAe9I,EAAGiM,EAAO1K,GAChC,IAAKvB,EAAE2C,WAAY,OAAOuJ,EAAkBlM,GAC5C,IAAI7B,EACFkC,EAAIL,EAAEK,EACN/B,EAAMN,EAAegC,EAAE/B,GACvBuD,EAAMlD,EAAIV,OAwBZ,OAtBIqO,GACE1K,IAAOpD,EAAIoD,EAAKC,GAAO,EACzBlD,EAAMA,EAAIsB,OAAO,GAAK,IAAMtB,EAAIuE,MAAM,GAAKrE,EAAcL,GAChDqD,EAAM,IACflD,EAAMA,EAAIsB,OAAO,GAAK,IAAMtB,EAAIuE,MAAM,IAGxCvE,EAAMA,GAAO0B,EAAEK,EAAI,EAAI,IAAM,MAAQL,EAAEK,GAC9BA,EAAI,GACb/B,EAAM,KAAOE,GAAe6B,EAAI,GAAK/B,EACjCiD,IAAOpD,EAAIoD,EAAKC,GAAO,IAAGlD,GAAOE,EAAcL,KAC1CkC,GAAKmB,GACdlD,GAAOE,EAAc6B,EAAI,EAAImB,GACzBD,IAAOpD,EAAIoD,EAAKlB,EAAI,GAAK,IAAG/B,EAAMA,EAAM,IAAME,EAAcL,OAE3DA,EAAIkC,EAAI,GAAKmB,IAAKlD,EAAMA,EAAIuE,MAAM,EAAG1E,GAAK,IAAMG,EAAIuE,MAAM1E,IAC3DoD,IAAOpD,EAAIoD,EAAKC,GAAO,IACrBnB,EAAI,IAAMmB,IAAKlD,GAAO,KAC1BA,GAAOE,EAAcL,KAIlBG,CACT,CAIA,SAASgJ,EAAkBuE,EAAQxL,GACjC,IAAI9B,EAAIsN,EAAO,GAGf,IAAMxL,GAv9FK,EAu9FU9B,GAAK,GAAIA,GAAK,GAAI8B,IACvC,OAAOA,CACT,CAGA,SAAS0G,EAAQvG,EAAMe,EAAID,GACzB,GAAIC,EAAK5D,EAKP,MAFAhB,GAAW,EACP2E,IAAId,EAAKrE,UAAYmF,GACnB1C,MAAM9B,GAEd,OAAOsD,EAAS,IAAII,EAAKxE,GAAOuF,EAAI,GAAG,EACzC,CAGA,SAASoD,EAAMnE,EAAMe,EAAIzC,GACvB,GAAIyC,EAAK1D,EAAc,MAAMe,MAAM9B,GACnC,OAAOsD,EAAS,IAAII,EAAKvE,GAAKsF,EAAIzC,GAAI,EACxC,CAGA,SAASkJ,EAAa6D,GACpB,IAAItN,EAAIsN,EAAOjO,OAAS,EACtB4D,EAh/FS,EAg/FHjD,EAAe,EAKvB,GAHAA,EAAIsN,EAAOtN,GAGJ,CAGL,KAAOA,EAAI,IAAM,EAAGA,GAAK,GAAIiD,IAG7B,IAAKjD,EAAIsN,EAAO,GAAItN,GAAK,GAAIA,GAAK,GAAIiD,GACxC,CAEA,OAAOA,CACT,CAGA,SAAShD,EAAcL,GAErB,IADA,IAAIgO,EAAK,GACFhO,KAAMgO,GAAM,IACnB,OAAOA,CACT,CAUA,SAASrC,EAAOtJ,EAAMR,EAAGsC,EAAGhB,GAC1B,IAAIsK,EACF3M,EAAI,IAAIuB,EAAK,GAIbrC,EAAIjB,KAAKiC,KAAKmC,EAthGL,EAshGqB,GAIhC,IAFA3E,GAAW,IAEF,CAOP,GANI2F,EAAI,GAEF8J,GADJnN,EAAIA,EAAE4C,MAAM7B,IACG/B,EAAGE,KAAIyN,GAAc,GAI5B,KADVtJ,EAAIrF,EAAUqF,EAAI,IACL,CAGXA,EAAIrD,EAAEhB,EAAEL,OAAS,EACbgO,GAA0B,IAAX3M,EAAEhB,EAAEqE,MAAYrD,EAAEhB,EAAEqE,GACvC,KACF,CAGA8J,GADApM,EAAIA,EAAE6B,MAAM7B,IACD/B,EAAGE,EAChB,CAIA,OAFAxB,GAAW,EAEJsC,CACT,CAGA,SAASoN,EAAM/J,GACb,OAA6B,EAAtBA,EAAErE,EAAEqE,EAAErE,EAAEL,OAAS,EAC1B,CAMA,SAAS0O,EAAS9L,EAAM+L,EAAMjK,GAK5B,IAJA,IAAInE,EAAG0C,EACLb,EAAI,IAAIQ,EAAK+L,EAAK,IAClBrO,EAAI,IAEGA,EAAIqO,EAAK3O,QAAS,CAIzB,KAHAiD,EAAI,IAAIL,EAAK+L,EAAKrO,KAGXiC,EAAG,CACRH,EAAIa,EACJ,KACF,GAEA1C,EAAI6B,EAAEW,IAAIE,MAEAyB,GAAW,IAANnE,GAAW6B,EAAEG,IAAMmC,KAChCtC,EAAIa,EAER,CAEA,OAAOb,CACT,CAkCA,SAASyH,EAAmBzH,EAAGuB,GAC7B,IAAImF,EAAa8F,EAAOjN,EAAGlC,EAAKoP,EAAKjK,EAAG6C,EACtC9C,EAAM,EACNrE,EAAI,EACJC,EAAI,EACJqC,EAAOR,EAAEE,YACTpB,EAAK0B,EAAKpE,SACVkF,EAAKd,EAAKrE,UAGZ,IAAK6D,EAAE/B,IAAM+B,EAAE/B,EAAE,IAAM+B,EAAEK,EAAI,GAE3B,OAAO,IAAIG,EAAKR,EAAE/B,EACb+B,EAAE/B,EAAE,GAAS+B,EAAEG,EAAI,EAAI,EAAI,IAAlB,EACVH,EAAEG,EAAIH,EAAEG,EAAI,EAAI,EAAIH,EAAI,KAa9B,IAVU,MAANuB,GACF5E,GAAW,EACX0I,EAAM/D,GAEN+D,EAAM9D,EAGRiB,EAAI,IAAIhC,EAAK,QAGNR,EAAEK,GAAK,GAGZL,EAAIA,EAAE6B,MAAMW,GACZrE,GAAK,EAUP,IAJAkH,GADAmH,EAAQtP,KAAKqJ,IAAInJ,EAAQ,EAAGe,IAAMjB,KAAKlB,KAAO,EAAI,EAAI,EAEtD0K,EAAcrJ,EAAMoP,EAAM,IAAIjM,EAAK,GACnCA,EAAKrE,UAAYkJ,IAER,CAKP,GAJAhI,EAAM+C,EAAS/C,EAAIwE,MAAM7B,GAAIqF,EAAK,GAClCqB,EAAcA,EAAY7E,QAAQ3D,GAG9BF,GAFJwE,EAAIiK,EAAIzK,KAAKc,EAAOzF,EAAKqJ,EAAarB,EAAK,KAEtBpH,GAAG4E,MAAM,EAAGwC,KAASrH,EAAeyO,EAAIxO,GAAG4E,MAAM,EAAGwC,GAAM,CAE7E,IADA9F,EAAIpB,EACGoB,KAAKkN,EAAMrM,EAASqM,EAAI5K,MAAM4K,GAAMpH,EAAK,GAOhD,GAAU,MAAN9D,EAYF,OADAf,EAAKrE,UAAYmF,EACVmL,EAVP,KAAIlK,EAAM,GAAK1D,EAAoB4N,EAAIxO,EAAGoH,EAAMmH,EAAO1N,EAAIyD,IAMzD,OAAOnC,EAASqM,EAAKjM,EAAKrE,UAAYmF,EAAIxC,EAAInC,GAAW,GALzD6D,EAAKrE,UAAYkJ,GAAO,GACxBqB,EAAcrJ,EAAMmF,EAAI,IAAIhC,EAAK,GACjCtC,EAAI,EACJqE,GAQN,CAEAkK,EAAMjK,CACR,CACF,CAkBA,SAASsE,EAAiBjG,EAAGU,GAC3B,IAAImL,EAAGC,EAAIjG,EAAarG,EAAGuM,EAAWrK,EAAKkK,EAAKjK,EAAG6C,EAAKwH,EAAIjH,EAC1DtD,EAAI,EAEJtC,EAAIa,EACJG,EAAKhB,EAAE/B,EACPuC,EAAOR,EAAEE,YACTpB,EAAK0B,EAAKpE,SACVkF,EAAKd,EAAKrE,UAGZ,GAAI6D,EAAEG,EAAI,IAAMa,IAAOA,EAAG,KAAOhB,EAAEK,GAAc,GAATW,EAAG,IAAwB,GAAbA,EAAGpD,OACvD,OAAO,IAAI4C,EAAKQ,IAAOA,EAAG,IAAK,IAAgB,GAAPhB,EAAEG,EAASM,IAAMO,EAAK,EAAIhB,GAcpE,GAXU,MAANuB,GACF5E,GAAW,EACX0I,EAAM/D,GAEN+D,EAAM9D,EAGRf,EAAKrE,UAAYkJ,GAnBP,GAqBVsH,GADAD,EAAI1O,EAAegD,IACZpB,OAAO,KAEV1C,KAAK6C,IAAIM,EAAIL,EAAEK,GAAK,OAqCtB,OAJAmC,EAAIuE,EAAQvG,EAAM6E,EAAM,EAAG/D,GAAIO,MAAMxB,EAAI,IACzCL,EAAI8G,EAAiB,IAAItG,EAAKmM,EAAK,IAAMD,EAAE7J,MAAM,IAAKwC,EAzD9C,IAyD2DrD,KAAKQ,GACxEhC,EAAKrE,UAAYmF,EAEJ,MAANC,EAAanB,EAASJ,EAAGsB,EAAIxC,EAAInC,GAAW,GAAQqD,EAxB3D,KAAO2M,EAAK,GAAW,GAANA,GAAiB,GAANA,GAAWD,EAAE9M,OAAO,GAAK,GAGnD+M,GADAD,EAAI1O,GADJgC,EAAIA,EAAE6B,MAAMhB,IACS5C,IACd2B,OAAO,GACd0C,IAiCJ,IA9BEjC,EAAIL,EAAEK,EAEFsM,EAAK,GACP3M,EAAI,IAAIQ,EAAK,KAAOkM,GACpBrM,KAEAL,EAAI,IAAIQ,EAAKmM,EAAK,IAAMD,EAAE7J,MAAM,IAepCgK,EAAK7M,EAKLyM,EAAMG,EAAY5M,EAAI8C,EAAO9C,EAAE+B,MAAM,GAAI/B,EAAEgC,KAAK,GAAIqD,EAAK,GACzDO,EAAKxF,EAASJ,EAAE6B,MAAM7B,GAAIqF,EAAK,GAC/BqB,EAAc,IAEL,CAIP,GAHAkG,EAAYxM,EAASwM,EAAU/K,MAAM+D,GAAKP,EAAK,GAG3CrH,GAFJwE,EAAIiK,EAAIzK,KAAKc,EAAO8J,EAAW,IAAIpM,EAAKkG,GAAcrB,EAAK,KAEtCpH,GAAG4E,MAAM,EAAGwC,KAASrH,EAAeyO,EAAIxO,GAAG4E,MAAM,EAAGwC,GAAM,CAc7E,GAbAoH,EAAMA,EAAI5K,MAAM,GAIN,IAANxB,IAASoM,EAAMA,EAAIzK,KAAK+E,EAAQvG,EAAM6E,EAAM,EAAG/D,GAAIO,MAAMxB,EAAI,MACjEoM,EAAM3J,EAAO2J,EAAK,IAAIjM,EAAK8B,GAAI+C,EAAK,GAQ1B,MAAN9D,EAWF,OADAf,EAAKrE,UAAYmF,EACVmL,EAVP,IAAI5N,EAAoB4N,EAAIxO,EAAGoH,EA5F3B,GA4FwCvG,EAAIyD,GAM9C,OAAOnC,EAASqM,EAAKjM,EAAKrE,UAAYmF,EAAIxC,EAAInC,GAAW,GALzD6D,EAAKrE,UAAYkJ,GA7Ff,GA8FF7C,EAAIoK,EAAY5M,EAAI8C,EAAO+J,EAAG9K,MAAM,GAAI8K,EAAG7K,KAAK,GAAIqD,EAAK,GACzDO,EAAKxF,EAASJ,EAAE6B,MAAM7B,GAAIqF,EAAK,GAC/BqB,EAAcnE,EAAM,CAQ1B,CAEAkK,EAAMjK,EACNkE,GAAe,CACjB,CACF,CAIA,SAASwF,EAAkBlM,GAEzB,OAAO8M,OAAO9M,EAAEG,EAAIH,EAAEG,EAAI,EAC5B,CAMA,SAAS4M,EAAa/M,EAAG1B,GACvB,IAAI+B,EAAGnC,EAAGsD,EAoBV,KAhBKnB,EAAI/B,EAAIqB,QAAQ,OAAS,IAAGrB,EAAMA,EAAI0O,QAAQ,IAAK,MAGnD9O,EAAII,EAAI2O,OAAO,OAAS,GAGvB5M,EAAI,IAAGA,EAAInC,GACfmC,IAAM/B,EAAIuE,MAAM3E,EAAI,GACpBI,EAAMA,EAAI4O,UAAU,EAAGhP,IACdmC,EAAI,IAGbA,EAAI/B,EAAIV,QAILM,EAAI,EAAyB,KAAtBI,EAAI6O,WAAWjP,GAAWA,KAGtC,IAAKsD,EAAMlD,EAAIV,OAAoC,KAA5BU,EAAI6O,WAAW3L,EAAM,KAAaA,GAGzD,GAFAlD,EAAMA,EAAIuE,MAAM3E,EAAGsD,GAEV,CAYP,GAXAA,GAAOtD,EACP8B,EAAEK,EAAIA,EAAIA,EAAInC,EAAI,EAClB8B,EAAE/B,EAAI,GAMNC,GAAKmC,EAAI,GA/2GA,EAg3GLA,EAAI,IAAGnC,GAh3GF,GAk3GLA,EAAIsD,EAAK,CAEX,IADItD,GAAG8B,EAAE/B,EAAEkJ,MAAM7I,EAAIuE,MAAM,EAAG3E,IACzBsD,GAp3GE,EAo3GetD,EAAIsD,GAAMxB,EAAE/B,EAAEkJ,MAAM7I,EAAIuE,MAAM3E,EAAGA,GAp3GhD,IAs3GPA,EAt3GO,GAq3GPI,EAAMA,EAAIuE,MAAM3E,IACGN,MACrB,MACEM,GAAKsD,EAGP,KAAOtD,KAAMI,GAAO,IACpB0B,EAAE/B,EAAEkJ,MAAM7I,GAEN3B,IAGEqD,EAAEK,EAAIL,EAAEE,YAAYzD,MAGtBuD,EAAE/B,EAAI,KACN+B,EAAEK,EAAII,KAGGT,EAAEK,EAAIL,EAAEE,YAAY1D,OAG7BwD,EAAEK,EAAI,EACNL,EAAE/B,EAAI,CAAC,IAIb,MAGE+B,EAAEK,EAAI,EACNL,EAAE/B,EAAI,CAAC,GAGT,OAAO+B,CACT,CAMA,SAASoN,EAAWpN,EAAG1B,GACrB,IAAIkI,EAAMhG,EAAM6M,EAASnP,EAAGoP,EAAS9L,EAAK+L,EAAGvM,EAAIiG,EAEjD,GAAI3I,EAAIqB,QAAQ,MAAQ,GAEtB,GADArB,EAAMA,EAAI0O,QAAQ,eAAgB,MAC9BvP,EAAU+P,KAAKlP,GAAM,OAAOyO,EAAa/M,EAAG1B,QAC3C,GAAY,aAARA,GAA8B,QAARA,EAI/B,OAHMA,IAAK0B,EAAEG,EAAIM,KACjBT,EAAEK,EAAII,IACNT,EAAE/B,EAAI,KACC+B,EAGT,GAAIzC,EAAMiQ,KAAKlP,GACbkI,EAAO,GACPlI,EAAMA,EAAImP,mBACL,GAAInQ,EAASkQ,KAAKlP,GACvBkI,EAAO,MACF,KAAIhJ,EAAQgQ,KAAKlP,GAGtB,MAAMM,MAAM/B,EAAkByB,GAF9BkI,EAAO,CAGT,CA+BA,KA5BAtI,EAAII,EAAI2O,OAAO,OAEP,GACNM,GAAKjP,EAAIuE,MAAM3E,EAAI,GACnBI,EAAMA,EAAI4O,UAAU,EAAGhP,IAEvBI,EAAMA,EAAIuE,MAAM,GAMlByK,GADApP,EAAII,EAAIqB,QAAQ,OACD,EACfa,EAAOR,EAAEE,YAELoN,IAGFpP,GADAsD,GADAlD,EAAMA,EAAI0O,QAAQ,IAAK,KACbpP,QACAM,EAGVmP,EAAUvD,EAAOtJ,EAAM,IAAIA,EAAKgG,GAAOtI,EAAO,EAAJA,IAOvCA,EAHL+I,GADAjG,EAAK5B,EAAYd,EAAKkI,EAAM9I,IACpBE,OAAS,EAGM,IAAVoD,EAAG9C,KAAYA,EAAG8C,EAAGoG,MAClC,OAAIlJ,EAAI,EAAU,IAAIsC,EAAW,EAANR,EAAEG,IAC7BH,EAAEK,EAAIiH,EAAkBtG,EAAIiG,GAC5BjH,EAAE/B,EAAI+C,EACNrE,GAAW,EAQP2Q,IAAStN,EAAI8C,EAAO9C,EAAGqN,EAAe,EAAN7L,IAGhC+L,IAAGvN,EAAIA,EAAE6B,MAAM3E,KAAK6C,IAAIwN,GAAK,GAAKnQ,EAAQ,EAAGmQ,GAAKG,GAAQrQ,IAAI,EAAGkQ,KACrE5Q,GAAW,EAEJqD,EACT,CA0CA,SAAS4B,EAAapB,EAAM8B,EAAGtC,EAAGa,EAAG8M,GACnC,IAAIpO,EAAGiD,EAAGoL,EAAGhI,EAEXtE,EAAKd,EAAKrE,UACVgC,EAAIjB,KAAKiC,KAAKmC,EAphHL,GA0hHX,IAJA3E,GAAW,EACXiJ,EAAK5F,EAAE6B,MAAM7B,GACb4N,EAAI,IAAIpN,EAAKK,KAEJ,CAMP,GALA2B,EAAIM,EAAO8K,EAAE/L,MAAM+D,GAAK,IAAIpF,EAAK8B,IAAMA,KAAMhB,EAAI,GACjDsM,EAAID,EAAe9M,EAAEmB,KAAKQ,GAAK3B,EAAEkB,MAAMS,GACvC3B,EAAIiC,EAAON,EAAEX,MAAM+D,GAAK,IAAIpF,EAAK8B,IAAMA,KAAMhB,EAAI,QAGlC,KAFfkB,EAAIoL,EAAE5L,KAAKnB,IAEL5C,EAAEE,GAAe,CACrB,IAAKoB,EAAIpB,EAAGqE,EAAEvE,EAAEsB,KAAOqO,EAAE3P,EAAEsB,IAAMA,MACjC,IAAU,GAANA,EAAS,KACf,CAEAA,EAAIqO,EACJA,EAAI/M,EACJA,EAAI2B,EACJA,EAAIjD,CAEN,CAKA,OAHA5C,GAAW,EACX6F,EAAEvE,EAAEL,OAASO,EAAI,EAEVqE,CACT,CAIA,SAASd,EAAQgJ,EAAGrK,GAElB,IADA,IAAIiC,EAAIoI,IACCrK,GAAGiC,GAAKoI,EACjB,OAAOpI,CACT,CAIA,SAASL,EAAiBzB,EAAMR,GAC9B,IAAIwC,EACFkC,EAAQ1E,EAAEG,EAAI,EACd0N,EAAKlJ,EAAMnE,EAAMA,EAAKrE,UAAW,GACjCsJ,EAASoI,EAAGhM,MAAM,IAIpB,IAFA7B,EAAIA,EAAED,OAEAgF,IAAIU,GAER,OADA7J,EAAW8I,EAAQ,EAAI,EAChB1E,EAKT,IAFAwC,EAAIxC,EAAEqD,SAASwK,IAETpM,SACJ7F,EAAW8I,EAAQ,EAAI,MAClB,CAIL,IAHA1E,EAAIA,EAAE+B,MAAMS,EAAEX,MAAMgM,KAGd9I,IAAIU,GAER,OADA7J,EAAWyQ,EAAM7J,GAAMkC,EAAQ,EAAI,EAAMA,EAAQ,EAAI,EAC9C1E,EAGTpE,EAAWyQ,EAAM7J,GAAMkC,EAAQ,EAAI,EAAMA,EAAQ,EAAI,CACvD,CAEA,OAAO1E,EAAE+B,MAAM8L,GAAI9N,KACrB,CAQA,SAAS4I,EAAe3I,EAAGV,EAASiC,EAAIzC,GACtC,IAAI0H,EAAMnG,EAAGnC,EAAGC,EAAGqD,EAAKsK,EAASxN,EAAK0C,EAAIH,EACxCL,EAAOR,EAAEE,YACT+L,OAAe,IAAP1K,EAWV,GATI0K,GACFxN,EAAW8C,EAAI,EAAGzF,QACP,IAAPgD,EAAeA,EAAK0B,EAAKpE,SACxBqC,EAAWK,EAAI,EAAG,KAEvByC,EAAKf,EAAKrE,UACV2C,EAAK0B,EAAKpE,UAGP4D,EAAE2C,WAEA,CAoCL,IA3BIsJ,GACFzF,EAAO,EACQ,IAAXlH,EACFiC,EAAU,EAALA,EAAS,EACM,GAAXjC,IACTiC,EAAU,EAALA,EAAS,IAGhBiF,EAAOlH,GAfTpB,GADAI,EAAMwK,EAAe9I,IACbL,QAAQ,OAsBP,IACPrB,EAAMA,EAAI0O,QAAQ,IAAK,KACvBnM,EAAI,IAAIL,EAAK,IACXH,EAAI/B,EAAIV,OAASM,EACnB2C,EAAE5C,EAAImB,EAAY0J,EAAejI,GAAI,GAAI2F,GACzC3F,EAAER,EAAIQ,EAAE5C,EAAEL,QAIZyC,EAAImB,GADJR,EAAK5B,EAAYd,EAAK,GAAIkI,IACb5I,OAGO,GAAboD,IAAKQ,IAAYR,EAAGoG,MAE3B,GAAKpG,EAAG,GAED,CAyBL,GAxBI9C,EAAI,EACNmC,MAEAL,EAAI,IAAIQ,EAAKR,IACX/B,EAAI+C,EACNhB,EAAEK,EAAIA,EAENW,GADAhB,EAAI8C,EAAO9C,EAAGa,EAAGU,EAAIzC,EAAI,EAAG0H,IACrBvI,EACPoC,EAAIL,EAAEK,EACNyL,EAAUnQ,GAIZuC,EAAI8C,EAAGO,GACPpD,EAAIqI,EAAO,EACXsF,EAAUA,QAA0B,IAAf9K,EAAGO,EAAK,GAE7BuK,EAAUhN,EAAK,QACJ,IAANZ,GAAgB4N,KAAoB,IAAPhN,GAAYA,KAAQkB,EAAEG,EAAI,EAAI,EAAI,IAChEjC,EAAIC,GAAKD,IAAMC,IAAa,IAAPW,GAAYgN,GAAkB,IAAPhN,GAAyB,EAAbkC,EAAGO,EAAK,IAChEzC,KAAQkB,EAAEG,EAAI,EAAI,EAAI,IAE1Ba,EAAGpD,OAAS2D,EAERuK,EAGF,OAAS9K,IAAKO,GAAMiF,EAAO,GACzBxF,EAAGO,GAAM,EACJA,MACDlB,EACFW,EAAG8G,QAAQ,IAMjB,IAAKtG,EAAMR,EAAGpD,QAASoD,EAAGQ,EAAM,KAAMA,GAGtC,IAAKtD,EAAI,EAAGI,EAAM,GAAIJ,EAAIsD,EAAKtD,IAAKI,GAAOvC,EAAS6D,OAAOoB,EAAG9C,IAG9D,GAAI+N,EAAO,CACT,GAAIzK,EAAM,EACR,GAAe,IAAXlC,GAA4B,GAAXA,EAAc,CAEjC,IADApB,EAAe,IAAXoB,EAAgB,EAAI,IACjBkC,EAAKA,EAAMtD,EAAGsD,IAAOlD,GAAO,IAEnC,IAAKkD,GADLR,EAAK5B,EAAYd,EAAKkI,EAAMlH,IACd1B,QAASoD,EAAGQ,EAAM,KAAMA,GAGtC,IAAKtD,EAAI,EAAGI,EAAM,KAAMJ,EAAIsD,EAAKtD,IAAKI,GAAOvC,EAAS6D,OAAOoB,EAAG9C,GAClE,MACEI,EAAMA,EAAIsB,OAAO,GAAK,IAAMtB,EAAIuE,MAAM,GAI1CvE,EAAOA,GAAO+B,EAAI,EAAI,IAAM,MAAQA,CACtC,MAAO,GAAIA,EAAI,EAAG,CAChB,OAASA,GAAI/B,EAAM,IAAMA,EACzBA,EAAM,KAAOA,CACf,MACE,KAAM+B,EAAImB,EAAK,IAAKnB,GAAKmB,EAAKnB,KAAO/B,GAAO,SACnC+B,EAAImB,IAAKlD,EAAMA,EAAIuE,MAAM,EAAGxC,GAAK,IAAM/B,EAAIuE,MAAMxC,GAE9D,MApEE/B,EAAM2N,EAAQ,OAAS,IAsEzB3N,GAAkB,IAAXgB,EAAgB,KAAkB,GAAXA,EAAe,KAAkB,GAAXA,EAAe,KAAO,IAAMhB,CAClF,MA/GEA,EAAM4N,EAAkBlM,GAiH1B,OAAOA,EAAEG,EAAI,EAAI,IAAM7B,EAAMA,CAC/B,CAIA,SAAS8N,EAAS3M,EAAK+B,GACrB,GAAI/B,EAAI7B,OAAS4D,EAEf,OADA/B,EAAI7B,OAAS4D,GACN,CAEX,CAyDA,SAASzB,EAAIC,GACX,OAAO,IAAIC,KAAKD,GAAGD,KACrB,CASA,SAAS0E,EAAKzE,GACZ,OAAO,IAAIC,KAAKD,GAAGyE,MACrB,CAUA,SAASK,GAAM9E,GACb,OAAO,IAAIC,KAAKD,GAAG8E,OACrB,CAWA,SAAS8C,GAAI5H,EAAGa,GACd,OAAO,IAAIZ,KAAKD,GAAGgC,KAAKnB,EAC1B,CAUA,SAAS2E,GAAKxF,GACZ,OAAO,IAAIC,KAAKD,GAAGwF,MACrB,CAUA,SAASN,GAAMlF,GACb,OAAO,IAAIC,KAAKD,GAAGkF,OACrB,CAUA,SAASN,GAAK5E,GACZ,OAAO,IAAIC,KAAKD,GAAG4E,MACrB,CAUA,SAASQ,GAAMpF,GACb,OAAO,IAAIC,KAAKD,GAAGoF,OACrB,CA4BA,SAAS0I,GAAMjN,EAAGb,GAChBa,EAAI,IAAIZ,KAAKY,GACbb,EAAI,IAAIC,KAAKD,GACb,IAAIf,EACFqC,EAAKrB,KAAK9D,UACV2C,EAAKmB,KAAK7D,SACViJ,EAAM/D,EAAK,EAkCb,OA/BKT,EAAEV,GAAMH,EAAEG,EAIHU,EAAE5C,GAAM+B,EAAE/B,GAKV+B,EAAE/B,GAAK4C,EAAEY,UACnBxC,EAAIe,EAAEG,EAAI,EAAIwE,EAAM1E,KAAMqB,EAAIxC,GAAM,IAAImB,KAAK,IAC3CE,EAAIU,EAAEV,GAGEU,EAAE5C,GAAK+B,EAAEyB,UACnBxC,EAAI0F,EAAM1E,KAAMoF,EAAK,GAAGxD,MAAM,KAC5B1B,EAAIU,EAAEV,EAGCH,EAAEG,EAAI,GACfF,KAAK9D,UAAYkJ,EACjBpF,KAAK7D,SAAW,EAChB6C,EAAIgB,KAAK2E,KAAK9B,EAAOjC,EAAGb,EAAGqF,EAAK,IAChCrF,EAAI2E,EAAM1E,KAAMoF,EAAK,GACrBpF,KAAK9D,UAAYmF,EACjBrB,KAAK7D,SAAW0C,EAChBG,EAAI4B,EAAEV,EAAI,EAAIlB,EAAE8C,MAAM/B,GAAKf,EAAE+C,KAAKhC,IAElCf,EAAIgB,KAAK2E,KAAK9B,EAAOjC,EAAGb,EAAGqF,EAAK,KAvBhCpG,EAAI0F,EAAM1E,KAAMoF,EAAK,GAAGxD,MAAM7B,EAAEG,EAAI,EAAI,IAAO,MAC7CA,EAAIU,EAAEV,EALRlB,EAAI,IAAIgB,KAAKQ,KA8BRxB,CACT,CAUA,SAASmD,GAAKpC,GACZ,OAAO,IAAIC,KAAKD,GAAGoC,MACrB,CASA,SAASjD,GAAKa,GACZ,OAAOI,EAASJ,EAAI,IAAIC,KAAKD,GAAIA,EAAEK,EAAI,EAAG,EAC5C,CAWA,SAASE,GAAMP,EAAGtB,EAAKC,GACrB,OAAO,IAAIsB,KAAKD,GAAGO,MAAM7B,EAAKC,EAChC,CAqBA,SAASoP,GAAOC,GACd,IAAKA,GAAsB,kBAARA,EAAkB,MAAMpP,MAAMhC,EAAe,mBAChE,IAAIsB,EAAGqP,EAAGU,EACRC,GAA+B,IAAjBF,EAAIG,SAClBC,EAAK,CACH,YAAa,EAAGtS,EAChB,WAAY,EAAG,EACf,YAAaD,EAAW,EACxB,WAAY,EAAGA,EACf,OAAQ,EAAGA,EACX,QAASA,EAAW,EACpB,SAAU,EAAG,GAGjB,IAAKqC,EAAI,EAAGA,EAAIkQ,EAAGxQ,OAAQM,GAAK,EAE9B,GADIqP,EAAIa,EAAGlQ,GAAIgQ,IAAajO,KAAKsN,GAAKrR,EAASqR,SAC1B,KAAhBU,EAAID,EAAIT,IAAgB,CAC3B,KAAItQ,EAAUgR,KAAOA,GAAKA,GAAKG,EAAGlQ,EAAI,IAAM+P,GAAKG,EAAGlQ,EAAI,IACnD,MAAMU,MAAM/B,EAAkB0Q,EAAI,KAAOU,GADchO,KAAKsN,GAAKU,CAExE,CAIF,GADIV,EAAI,SAAUW,IAAajO,KAAKsN,GAAKrR,EAASqR,SAC7B,KAAhBU,EAAID,EAAIT,IAAgB,CAC3B,IAAU,IAANU,IAAoB,IAANA,GAAqB,IAANA,GAAiB,IAANA,EAY1C,MAAMrP,MAAM/B,EAAkB0Q,EAAI,KAAOU,GAXzC,GAAIA,EAAG,CACL,GAAqB,oBAAVvR,SAAyBA,SACjCA,OAAO2R,kBAAmB3R,OAAO4R,YAGlC,MAAM1P,MAAM7B,GAFZkD,KAAKsN,IAAK,CAId,MACEtN,KAAKsN,IAAK,CAKhB,CAEA,OAAOtN,IACT,CAUA,SAASoB,GAAIrB,GACX,OAAO,IAAIC,KAAKD,GAAGqB,KACrB,CAUA,SAASsC,GAAK3D,GACZ,OAAO,IAAIC,KAAKD,GAAG2D,MACrB,CAkNA,SAASR,GAAInD,EAAGa,GACd,OAAO,IAAIZ,KAAKD,GAAGmD,IAAItC,EACzB,CAUA,SAAS6G,GAAI1H,GACX,OAAO,IAAIC,KAAKD,GAAG0H,KACrB,CASA,SAASvK,GAAM6C,GACb,OAAOI,EAASJ,EAAI,IAAIC,KAAKD,GAAIA,EAAEK,EAAI,EAAG,EAC5C,CAYA,SAASkO,KACP,IAAIrQ,EAAGoE,EACLE,EAAI,IAAIvC,KAAK,GAIf,IAFAtD,GAAW,EAENuB,EAAI,EAAGA,EAAIsQ,UAAU5Q,QAExB,IADA0E,EAAI,IAAIrC,KAAKuO,UAAUtQ,OAChBD,EAMIuE,EAAEvE,IACXuE,EAAIA,EAAER,KAAKM,EAAET,MAAMS,SAPX,CACR,GAAIA,EAAEnC,EAEJ,OADAxD,GAAW,EACJ,IAAIsD,KAAK,KAElBuC,EAAIF,CACN,CAOF,OAFA3F,GAAW,EAEJ6F,EAAEyB,MACX,CAQA,SAASwK,GAAkBT,GACzB,OAAOA,aAAeN,IAAWM,GAAOA,EAAIjQ,cAAgBf,IAAO,CACrE,CAUA,SAASgI,GAAGhF,GACV,OAAO,IAAIC,KAAKD,GAAGgF,IACrB,CAaA,SAASuB,GAAIvG,EAAGa,GACd,OAAO,IAAIZ,KAAKD,GAAGuG,IAAI1F,EACzB,CAUA,SAAS6N,GAAK1O,GACZ,OAAO,IAAIC,KAAKD,GAAGuG,IAAI,EACzB,CAUA,SAASoI,GAAM3O,GACb,OAAO,IAAIC,KAAKD,GAAGuG,IAAI,GACzB,CASA,SAAS5H,KACP,OAAO2N,EAASrM,KAAMuO,WAAY,EACpC,CASA,SAAS9P,KACP,OAAO4N,EAASrM,KAAMuO,UAAW,EACnC,CAWA,SAASjH,GAAIvH,EAAGa,GACd,OAAO,IAAIZ,KAAKD,GAAGuH,IAAI1G,EACzB,CAWA,SAAS2H,GAAIxI,EAAGa,GACd,OAAO,IAAIZ,KAAKD,GAAGwI,IAAI3H,EACzB,CAWA,SAASxD,GAAI2C,EAAGa,GACd,OAAO,IAAIZ,KAAKD,GAAG3C,IAAIwD,EACzB,CAWA,SAAS+N,GAAOrN,GACd,IAAItD,EAAGoC,EAAGlC,EAAGmE,EACXpE,EAAI,EACJe,EAAI,IAAIgB,KAAK,GACbf,EAAK,GAOP,QALW,IAAPqC,EAAeA,EAAKtB,KAAK9D,UACxBsC,EAAW8C,EAAI,EAAGzF,GAEvBqC,EAAIjB,KAAKiC,KAAKoC,EAr9IH,GAu9INtB,KAAKvD,OAIH,GAAIA,OAAO2R,gBAGhB,IAFApQ,EAAIvB,OAAO2R,gBAAgB,IAAIQ,YAAY1Q,IAEpCD,EAAIC,IACTmE,EAAIrE,EAAEC,KAIG,MACPD,EAAEC,GAAKxB,OAAO2R,gBAAgB,IAAIQ,YAAY,IAAI,GAKlD3P,EAAGhB,KAAOoE,EAAI,QAKb,KAAI5F,OAAO4R,YAwBhB,MAAM1P,MAAM7B,GAnBZ,IAFAkB,EAAIvB,OAAO4R,YAAYnQ,GAAK,GAErBD,EAAIC,IAGTmE,EAAIrE,EAAEC,IAAMD,EAAEC,EAAI,IAAM,IAAMD,EAAEC,EAAI,IAAM,MAAmB,IAAXD,EAAEC,EAAI,KAAc,MAG7D,MACPxB,OAAO4R,YAAY,GAAGQ,KAAK7Q,EAAGC,IAK9BgB,EAAGiI,KAAK7E,EAAI,KACZpE,GAAK,GAITA,EAAIC,EAAI,CAGV,MA/CE,KAAOD,EAAIC,GAAIe,EAAGhB,KAAuB,IAAhBhB,KAAK0R,SAAiB,EA2DjD,IATArN,GA1gJW,GAygJXpD,EAAIe,IAAKhB,KAIAqD,IACPe,EAAIlF,EAAQ,GA9gJH,EA8gJkBmE,GAC3BrC,EAAGhB,IAAMC,EAAImE,EAAI,GAAKA,GAIP,IAAVpD,EAAGhB,GAAUA,IAAKgB,EAAGkI,MAG5B,GAAIlJ,EAAI,EACNmC,EAAI,EACJnB,EAAK,CAAC,OACD,CAIL,IAHAmB,GAAK,EAGY,IAAVnB,EAAG,GAAUmB,GA7hJX,EA6hJ0BnB,EAAGmI,QAGtC,IAAKlJ,EAAI,EAAGmE,EAAIpD,EAAG,GAAIoD,GAAK,GAAIA,GAAK,GAAInE,IAGrCA,EAniJK,IAmiJSkC,GAniJT,EAmiJyBlC,EACpC,CAKA,OAHAc,EAAEoB,EAAIA,EACNpB,EAAEhB,EAAIiB,EAECD,CACT,CAWA,SAASgJ,GAAMjI,GACb,OAAOI,EAASJ,EAAI,IAAIC,KAAKD,GAAIA,EAAEK,EAAI,EAAGJ,KAAK7D,SACjD,CAcA,SAASuP,GAAK3L,GAEZ,OADAA,EAAI,IAAIC,KAAKD,IACJ/B,EAAK+B,EAAE/B,EAAE,GAAK+B,EAAEG,EAAI,EAAIH,EAAEG,EAAKH,EAAEG,GAAKM,GACjD,CAUA,SAAS0H,GAAInI,GACX,OAAO,IAAIC,KAAKD,GAAGmI,KACrB,CAUA,SAASnE,GAAKhE,GACZ,OAAO,IAAIC,KAAKD,GAAGgE,MACrB,CAUA,SAASC,GAAKjE,GACZ,OAAO,IAAIC,KAAKD,GAAGiE,MACrB,CAWA,SAAS+C,GAAIhH,EAAGa,GACd,OAAO,IAAIZ,KAAKD,GAAGgH,IAAInG,EACzB,CAYA,SAAS4L,KACP,IAAIvO,EAAI,EACNqO,EAAOiC,UACPxO,EAAI,IAAIC,KAAKsM,EAAKrO,IAGpB,IADAvB,GAAW,EACJqD,EAAEG,KAAOjC,EAAIqO,EAAK3O,QAASoC,EAAIA,EAAEgC,KAAKuK,EAAKrO,IAGlD,OAFAvB,GAAW,EAEJyD,EAASJ,EAAGC,KAAK9D,UAAW8D,KAAK7D,SAC1C,CAUA,SAASmM,GAAIvI,GACX,OAAO,IAAIC,KAAKD,GAAGuI,KACrB,CAUA,SAAShE,GAAKvE,GACZ,OAAO,IAAIC,KAAKD,GAAGuE,MACrB,CASA,SAAS4F,GAAMnK,GACb,OAAOI,EAASJ,EAAI,IAAIC,KAAKD,GAAIA,EAAEK,EAAI,EAAG,EAC5C,CAGAvC,EAAEiR,OAAOC,IAAI,+BAAiClR,EAAE6D,SAChD7D,EAAEiR,OAAOhR,aAAe,UAGjB,IAAI2P,GAAU5P,EAAEoC,YAvnBvB,SAAS+O,EAAMjB,GACb,IAAI9P,EAAGqP,EAAGa,EASV,SAASV,EAAQO,GACf,IAAI5N,EAAGnC,EAAGsE,EACRxC,EAAIC,KAGN,KAAMD,aAAa0N,GAAU,OAAO,IAAIA,EAAQO,GAMhD,GAFAjO,EAAEE,YAAcwN,EAEZe,GAAkBR,GAuBpB,OAtBAjO,EAAEG,EAAI8N,EAAE9N,OAEJxD,GACGsR,EAAEhQ,GAAKgQ,EAAE5N,EAAIqN,EAAQjR,MAGxBuD,EAAEK,EAAII,IACNT,EAAE/B,EAAI,MACGgQ,EAAE5N,EAAIqN,EAAQlR,MAGvBwD,EAAEK,EAAI,EACNL,EAAE/B,EAAI,CAAC,KAEP+B,EAAEK,EAAI4N,EAAE5N,EACRL,EAAE/B,EAAIgQ,EAAEhQ,EAAE4E,UAGZ7C,EAAEK,EAAI4N,EAAE5N,EACRL,EAAE/B,EAAIgQ,EAAEhQ,EAAIgQ,EAAEhQ,EAAE4E,QAAUoL,EAAEhQ,IAQhC,GAAU,YAFVuE,SAAWyL,GAES,CAClB,GAAU,IAANA,EAIF,OAHAjO,EAAEG,EAAI,EAAI8N,EAAI,GAAK,EAAI,EACvBjO,EAAEK,EAAI,OACNL,EAAE/B,EAAI,CAAC,IAYT,GARIgQ,EAAI,GACNA,GAAKA,EACLjO,EAAEG,GAAK,GAEPH,EAAEG,EAAI,EAIJ8N,MAAQA,GAAKA,EAAI,IAAK,CACxB,IAAK5N,EAAI,EAAGnC,EAAI+P,EAAG/P,GAAK,GAAIA,GAAK,GAAImC,IAkBrC,YAhBI1D,EACE0D,EAAIqN,EAAQjR,MACduD,EAAEK,EAAII,IACNT,EAAE/B,EAAI,MACGoC,EAAIqN,EAAQlR,MACrBwD,EAAEK,EAAI,EACNL,EAAE/B,EAAI,CAAC,KAEP+B,EAAEK,EAAIA,EACNL,EAAE/B,EAAI,CAACgQ,KAGTjO,EAAEK,EAAIA,EACNL,EAAE/B,EAAI,CAACgQ,IAIX,CAGA,OAAQ,EAAJA,IAAU,GACPA,IAAGjO,EAAEG,EAAIM,KACdT,EAAEK,EAAII,SACNT,EAAE/B,EAAI,OAID8O,EAAa/M,EAAGiO,EAAEtM,WAC3B,CAEA,GAAU,WAANa,EASF,OAR8B,MAAzBtE,EAAI+P,EAAEd,WAAW,KACpBc,EAAIA,EAAEpL,MAAM,GACZ7C,EAAEG,GAAK,IAEG,KAANjC,IAAU+P,EAAIA,EAAEpL,MAAM,IAC1B7C,EAAEG,EAAI,GAGD1C,EAAU+P,KAAKS,GAAKlB,EAAa/M,EAAGiO,GAAKb,EAAWpN,EAAGiO,GAGhE,GAAU,WAANzL,EAQF,OAPIyL,EAAI,GACNA,GAAKA,EACLjO,EAAEG,GAAK,GAEPH,EAAEG,EAAI,EAGD4M,EAAa/M,EAAGiO,EAAEtM,YAG3B,MAAM/C,MAAM/B,EAAkBoR,EAChC,CA2DA,GAzDAP,EAAQwB,UAAYpR,EAEpB4P,EAAQyB,SAAW,EACnBzB,EAAQ0B,WAAa,EACrB1B,EAAQ2B,WAAa,EACrB3B,EAAQ4B,YAAc,EACtB5B,EAAQ6B,cAAgB,EACxB7B,EAAQ8B,gBAAkB,EAC1B9B,EAAQ+B,gBAAkB,EAC1B/B,EAAQgC,gBAAkB,EAC1BhC,EAAQiC,iBAAmB,EAC3BjC,EAAQkC,OAAS,EAEjBlC,EAAQK,OAASL,EAAQmC,IAAM9B,GAC/BL,EAAQuB,MAAQA,EAChBvB,EAAQjQ,UAAYgR,GAEpBf,EAAQ3N,IAAMA,EACd2N,EAAQjJ,KAAOA,EACfiJ,EAAQ5I,MAAQA,GAChB4I,EAAQ9F,IAAMA,GACd8F,EAAQlI,KAAOA,GACfkI,EAAQxI,MAAQA,GAChBwI,EAAQ9I,KAAOA,GACf8I,EAAQtI,MAAQA,GAChBsI,EAAQI,MAAQA,GAChBJ,EAAQtL,KAAOA,GACfsL,EAAQvO,KAAOA,GACfuO,EAAQnN,MAAQA,GAChBmN,EAAQrM,IAAMA,GACdqM,EAAQ/J,KAAOA,GACf+J,EAAQvK,IAAMA,GACduK,EAAQhG,IAAMA,GACdgG,EAAQvQ,MAAQA,GAChBuQ,EAAQa,MAAQA,GAChBb,EAAQ1I,GAAKA,GACb0I,EAAQnH,IAAMA,GACdmH,EAAQiB,MAAQA,GAChBjB,EAAQgB,KAAOA,GACfhB,EAAQ/O,IAAMA,GACd+O,EAAQhP,IAAMA,GACdgP,EAAQnG,IAAMA,GACdmG,EAAQlF,IAAMA,GACdkF,EAAQrQ,IAAMA,GACdqQ,EAAQkB,OAASA,GACjBlB,EAAQzF,MAAQA,GAChByF,EAAQ/B,KAAOA,GACf+B,EAAQvF,IAAMA,GACduF,EAAQ1J,KAAOA,GACf0J,EAAQzJ,KAAOA,GACfyJ,EAAQ1G,IAAMA,GACd0G,EAAQjB,IAAMA,GACdiB,EAAQnF,IAAMA,GACdmF,EAAQnJ,KAAOA,GACfmJ,EAAQvD,MAAQA,QAEJ,IAAR6D,IAAgBA,EAAM,CAAC,GACvBA,IACmB,IAAjBA,EAAIG,SAEN,IADAC,EAAK,CAAC,YAAa,WAAY,WAAY,WAAY,OAAQ,OAAQ,SAAU,UAC5ElQ,EAAI,EAAGA,EAAIkQ,EAAGxQ,QAAcoQ,EAAI8B,eAAevC,EAAIa,EAAGlQ,QAAO8P,EAAIT,GAAKtN,KAAKsN,IAMpF,OAFAG,EAAQK,OAAOC,GAERN,CACT,CAwbqCuB,CAAM/S,GAG3CF,EAAO,IAAI0R,GAAQ1R,GACnBC,EAAK,IAAIyR,GAAQzR,GAEjB","sources":["webpack://shop-ware-development/./node_modules/decimal.js/decimal.mjs"],"sourcesContent":["/*!\r\n * decimal.js v10.5.0\r\n * An arbitrary-precision Decimal type for JavaScript.\r\n * https://github.com/MikeMcl/decimal.js\r\n * Copyright (c) 2025 Michael Mclaughlin \r\n * MIT Licence\r\n */\r\n\r\n\r\n// ----------------------------------- EDITABLE DEFAULTS ------------------------------------ //\r\n\r\n\r\n // The maximum exponent magnitude.\r\n // The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`.\r\nvar EXP_LIMIT = 9e15, // 0 to 9e15\r\n\r\n // The limit on the value of `precision`, and on the value of the first argument to\r\n // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`.\r\n MAX_DIGITS = 1e9, // 0 to 1e9\r\n\r\n // Base conversion alphabet.\r\n NUMERALS = '0123456789abcdef',\r\n\r\n // The natural logarithm of 10 (1025 digits).\r\n LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058',\r\n\r\n // Pi (1025 digits).\r\n PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789',\r\n\r\n\r\n // The initial configuration properties of the Decimal constructor.\r\n DEFAULTS = {\r\n\r\n // These values must be integers within the stated ranges (inclusive).\r\n // Most of these values can be changed at run-time using the `Decimal.config` method.\r\n\r\n // The maximum number of significant digits of the result of a calculation or base conversion.\r\n // E.g. `Decimal.config({ precision: 20 });`\r\n precision: 20, // 1 to MAX_DIGITS\r\n\r\n // The rounding mode used when rounding to `precision`.\r\n //\r\n // ROUND_UP 0 Away from zero.\r\n // ROUND_DOWN 1 Towards zero.\r\n // ROUND_CEIL 2 Towards +Infinity.\r\n // ROUND_FLOOR 3 Towards -Infinity.\r\n // ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up.\r\n // ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.\r\n // ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.\r\n // ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.\r\n // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.\r\n //\r\n // E.g.\r\n // `Decimal.rounding = 4;`\r\n // `Decimal.rounding = Decimal.ROUND_HALF_UP;`\r\n rounding: 4, // 0 to 8\r\n\r\n // The modulo mode used when calculating the modulus: a mod n.\r\n // The quotient (q = a / n) is calculated according to the corresponding rounding mode.\r\n // The remainder (r) is calculated as: r = a - n * q.\r\n //\r\n // UP 0 The remainder is positive if the dividend is negative, else is negative.\r\n // DOWN 1 The remainder has the same sign as the dividend (JavaScript %).\r\n // FLOOR 3 The remainder has the same sign as the divisor (Python %).\r\n // HALF_EVEN 6 The IEEE 754 remainder function.\r\n // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive.\r\n //\r\n // Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian\r\n // division (9) are commonly used for the modulus operation. The other rounding modes can also\r\n // be used, but they may not give useful results.\r\n modulo: 1, // 0 to 9\r\n\r\n // The exponent value at and beneath which `toString` returns exponential notation.\r\n // JavaScript numbers: -7\r\n toExpNeg: -7, // 0 to -EXP_LIMIT\r\n\r\n // The exponent value at and above which `toString` returns exponential notation.\r\n // JavaScript numbers: 21\r\n toExpPos: 21, // 0 to EXP_LIMIT\r\n\r\n // The minimum exponent value, beneath which underflow to zero occurs.\r\n // JavaScript numbers: -324 (5e-324)\r\n minE: -EXP_LIMIT, // -1 to -EXP_LIMIT\r\n\r\n // The maximum exponent value, above which overflow to Infinity occurs.\r\n // JavaScript numbers: 308 (1.7976931348623157e+308)\r\n maxE: EXP_LIMIT, // 1 to EXP_LIMIT\r\n\r\n // Whether to use cryptographically-secure random number generation, if available.\r\n crypto: false // true/false\r\n },\r\n\r\n\r\n// ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //\r\n\r\n\r\n inexact, quadrant,\r\n external = true,\r\n\r\n decimalError = '[DecimalError] ',\r\n invalidArgument = decimalError + 'Invalid argument: ',\r\n precisionLimitExceeded = decimalError + 'Precision limit exceeded',\r\n cryptoUnavailable = decimalError + 'crypto unavailable',\r\n tag = '[object Decimal]',\r\n\r\n mathfloor = Math.floor,\r\n mathpow = Math.pow,\r\n\r\n isBinary = /^0b([01]+(\\.[01]*)?|\\.[01]+)(p[+-]?\\d+)?$/i,\r\n isHex = /^0x([0-9a-f]+(\\.[0-9a-f]*)?|\\.[0-9a-f]+)(p[+-]?\\d+)?$/i,\r\n isOctal = /^0o([0-7]+(\\.[0-7]*)?|\\.[0-7]+)(p[+-]?\\d+)?$/i,\r\n isDecimal = /^(\\d+(\\.\\d*)?|\\.\\d+)(e[+-]?\\d+)?$/i,\r\n\r\n BASE = 1e7,\r\n LOG_BASE = 7,\r\n MAX_SAFE_INTEGER = 9007199254740991,\r\n\r\n LN10_PRECISION = LN10.length - 1,\r\n PI_PRECISION = PI.length - 1,\r\n\r\n // Decimal.prototype object\r\n P = { toStringTag: tag };\r\n\r\n\r\n// Decimal prototype methods\r\n\r\n\r\n/*\r\n * absoluteValue abs\r\n * ceil\r\n * clampedTo clamp\r\n * comparedTo cmp\r\n * cosine cos\r\n * cubeRoot cbrt\r\n * decimalPlaces dp\r\n * dividedBy div\r\n * dividedToIntegerBy divToInt\r\n * equals eq\r\n * floor\r\n * greaterThan gt\r\n * greaterThanOrEqualTo gte\r\n * hyperbolicCosine cosh\r\n * hyperbolicSine sinh\r\n * hyperbolicTangent tanh\r\n * inverseCosine acos\r\n * inverseHyperbolicCosine acosh\r\n * inverseHyperbolicSine asinh\r\n * inverseHyperbolicTangent atanh\r\n * inverseSine asin\r\n * inverseTangent atan\r\n * isFinite\r\n * isInteger isInt\r\n * isNaN\r\n * isNegative isNeg\r\n * isPositive isPos\r\n * isZero\r\n * lessThan lt\r\n * lessThanOrEqualTo lte\r\n * logarithm log\r\n * [maximum] [max]\r\n * [minimum] [min]\r\n * minus sub\r\n * modulo mod\r\n * naturalExponential exp\r\n * naturalLogarithm ln\r\n * negated neg\r\n * plus add\r\n * precision sd\r\n * round\r\n * sine sin\r\n * squareRoot sqrt\r\n * tangent tan\r\n * times mul\r\n * toBinary\r\n * toDecimalPlaces toDP\r\n * toExponential\r\n * toFixed\r\n * toFraction\r\n * toHexadecimal toHex\r\n * toNearest\r\n * toNumber\r\n * toOctal\r\n * toPower pow\r\n * toPrecision\r\n * toSignificantDigits toSD\r\n * toString\r\n * truncated trunc\r\n * valueOf toJSON\r\n */\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the absolute value of this Decimal.\r\n *\r\n */\r\nP.absoluteValue = P.abs = function () {\r\n var x = new this.constructor(this);\r\n if (x.s < 0) x.s = 1;\r\n return finalise(x);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the\r\n * direction of positive Infinity.\r\n *\r\n */\r\nP.ceil = function () {\r\n return finalise(new this.constructor(this), this.e + 1, 2);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal clamped to the range\r\n * delineated by `min` and `max`.\r\n *\r\n * min {number|string|bigint|Decimal}\r\n * max {number|string|bigint|Decimal}\r\n *\r\n */\r\nP.clampedTo = P.clamp = function (min, max) {\r\n var k,\r\n x = this,\r\n Ctor = x.constructor;\r\n min = new Ctor(min);\r\n max = new Ctor(max);\r\n if (!min.s || !max.s) return new Ctor(NaN);\r\n if (min.gt(max)) throw Error(invalidArgument + max);\r\n k = x.cmp(min);\r\n return k < 0 ? min : x.cmp(max) > 0 ? max : new Ctor(x);\r\n};\r\n\r\n\r\n/*\r\n * Return\r\n * 1 if the value of this Decimal is greater than the value of `y`,\r\n * -1 if the value of this Decimal is less than the value of `y`,\r\n * 0 if they have the same value,\r\n * NaN if the value of either Decimal is NaN.\r\n *\r\n */\r\nP.comparedTo = P.cmp = function (y) {\r\n var i, j, xdL, ydL,\r\n x = this,\r\n xd = x.d,\r\n yd = (y = new x.constructor(y)).d,\r\n xs = x.s,\r\n ys = y.s;\r\n\r\n // Either NaN or ±Infinity?\r\n if (!xd || !yd) {\r\n return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1;\r\n }\r\n\r\n // Either zero?\r\n if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0;\r\n\r\n // Signs differ?\r\n if (xs !== ys) return xs;\r\n\r\n // Compare exponents.\r\n if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1;\r\n\r\n xdL = xd.length;\r\n ydL = yd.length;\r\n\r\n // Compare digit by digit.\r\n for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {\r\n if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1;\r\n }\r\n\r\n // Compare lengths.\r\n return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the cosine of the value in radians of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-1, 1]\r\n *\r\n * cos(0) = 1\r\n * cos(-0) = 1\r\n * cos(Infinity) = NaN\r\n * cos(-Infinity) = NaN\r\n * cos(NaN) = NaN\r\n *\r\n */\r\nP.cosine = P.cos = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.d) return new Ctor(NaN);\r\n\r\n // cos(0) = cos(-0) = 1\r\n if (!x.d[0]) return new Ctor(1);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;\r\n Ctor.rounding = 1;\r\n\r\n x = cosine(Ctor, toLessThanHalfPi(Ctor, x));\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true);\r\n};\r\n\r\n\r\n/*\r\n *\r\n * Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * cbrt(0) = 0\r\n * cbrt(-0) = -0\r\n * cbrt(1) = 1\r\n * cbrt(-1) = -1\r\n * cbrt(N) = N\r\n * cbrt(-I) = -I\r\n * cbrt(I) = I\r\n *\r\n * Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3))\r\n *\r\n */\r\nP.cubeRoot = P.cbrt = function () {\r\n var e, m, n, r, rep, s, sd, t, t3, t3plusx,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite() || x.isZero()) return new Ctor(x);\r\n external = false;\r\n\r\n // Initial estimate.\r\n s = x.s * mathpow(x.s * x, 1 / 3);\r\n\r\n // Math.cbrt underflow/overflow?\r\n // Pass x to Math.pow as integer, then adjust the exponent of the result.\r\n if (!s || Math.abs(s) == 1 / 0) {\r\n n = digitsToString(x.d);\r\n e = x.e;\r\n\r\n // Adjust n exponent so it is a multiple of 3 away from x exponent.\r\n if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00');\r\n s = mathpow(n, 1 / 3);\r\n\r\n // Rarely, e may be one less than the result exponent value.\r\n e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2));\r\n\r\n if (s == 1 / 0) {\r\n n = '5e' + e;\r\n } else {\r\n n = s.toExponential();\r\n n = n.slice(0, n.indexOf('e') + 1) + e;\r\n }\r\n\r\n r = new Ctor(n);\r\n r.s = x.s;\r\n } else {\r\n r = new Ctor(s.toString());\r\n }\r\n\r\n sd = (e = Ctor.precision) + 3;\r\n\r\n // Halley's method.\r\n // TODO? Compare Newton's method.\r\n for (;;) {\r\n t = r;\r\n t3 = t.times(t).times(t);\r\n t3plusx = t3.plus(x);\r\n r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1);\r\n\r\n // TODO? Replace with for-loop and checkRoundingDigits.\r\n if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {\r\n n = n.slice(sd - 3, sd + 1);\r\n\r\n // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999\r\n // , i.e. approaching a rounding boundary, continue the iteration.\r\n if (n == '9999' || !rep && n == '4999') {\r\n\r\n // On the first iteration only, check to see if rounding up gives the exact result as the\r\n // nines may infinitely repeat.\r\n if (!rep) {\r\n finalise(t, e + 1, 0);\r\n\r\n if (t.times(t).times(t).eq(x)) {\r\n r = t;\r\n break;\r\n }\r\n }\r\n\r\n sd += 4;\r\n rep = 1;\r\n } else {\r\n\r\n // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.\r\n // If not, then there are further digits and m will be truthy.\r\n if (!+n || !+n.slice(1) && n.charAt(0) == '5') {\r\n\r\n // Truncate to the first rounding digit.\r\n finalise(r, e + 1, 1);\r\n m = !r.times(r).times(r).eq(x);\r\n }\r\n\r\n break;\r\n }\r\n }\r\n }\r\n\r\n external = true;\r\n\r\n return finalise(r, e, Ctor.rounding, m);\r\n};\r\n\r\n\r\n/*\r\n * Return the number of decimal places of the value of this Decimal.\r\n *\r\n */\r\nP.decimalPlaces = P.dp = function () {\r\n var w,\r\n d = this.d,\r\n n = NaN;\r\n\r\n if (d) {\r\n w = d.length - 1;\r\n n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE;\r\n\r\n // Subtract the number of trailing zeros of the last word.\r\n w = d[w];\r\n if (w) for (; w % 10 == 0; w /= 10) n--;\r\n if (n < 0) n = 0;\r\n }\r\n\r\n return n;\r\n};\r\n\r\n\r\n/*\r\n * n / 0 = I\r\n * n / N = N\r\n * n / I = 0\r\n * 0 / n = 0\r\n * 0 / 0 = N\r\n * 0 / N = N\r\n * 0 / I = 0\r\n * N / n = N\r\n * N / 0 = N\r\n * N / N = N\r\n * N / I = N\r\n * I / n = I\r\n * I / 0 = I\r\n * I / N = N\r\n * I / I = N\r\n *\r\n * Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.dividedBy = P.div = function (y) {\r\n return divide(this, new this.constructor(y));\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the integer part of dividing the value of this Decimal\r\n * by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.dividedToIntegerBy = P.divToInt = function (y) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding);\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false.\r\n *\r\n */\r\nP.equals = P.eq = function (y) {\r\n return this.cmp(y) === 0;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the\r\n * direction of negative Infinity.\r\n *\r\n */\r\nP.floor = function () {\r\n return finalise(new this.constructor(this), this.e + 1, 3);\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is greater than the value of `y`, otherwise return\r\n * false.\r\n *\r\n */\r\nP.greaterThan = P.gt = function (y) {\r\n return this.cmp(y) > 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is greater than or equal to the value of `y`,\r\n * otherwise return false.\r\n *\r\n */\r\nP.greaterThanOrEqualTo = P.gte = function (y) {\r\n var k = this.cmp(y);\r\n return k == 1 || k === 0;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [1, Infinity]\r\n *\r\n * cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ...\r\n *\r\n * cosh(0) = 1\r\n * cosh(-0) = 1\r\n * cosh(Infinity) = Infinity\r\n * cosh(-Infinity) = Infinity\r\n * cosh(NaN) = NaN\r\n *\r\n * x time taken (ms) result\r\n * 1000 9 9.8503555700852349694e+433\r\n * 10000 25 4.4034091128314607936e+4342\r\n * 100000 171 1.4033316802130615897e+43429\r\n * 1000000 3817 1.5166076984010437725e+434294\r\n * 10000000 abandoned after 2 minute wait\r\n *\r\n * TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x))\r\n *\r\n */\r\nP.hyperbolicCosine = P.cosh = function () {\r\n var k, n, pr, rm, len,\r\n x = this,\r\n Ctor = x.constructor,\r\n one = new Ctor(1);\r\n\r\n if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN);\r\n if (x.isZero()) return one;\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;\r\n Ctor.rounding = 1;\r\n len = x.d.length;\r\n\r\n // Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1\r\n // i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4))\r\n\r\n // Estimate the optimum number of times to use the argument reduction.\r\n // TODO? Estimation reused from cosine() and may not be optimal here.\r\n if (len < 32) {\r\n k = Math.ceil(len / 3);\r\n n = (1 / tinyPow(4, k)).toString();\r\n } else {\r\n k = 16;\r\n n = '2.3283064365386962890625e-10';\r\n }\r\n\r\n x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true);\r\n\r\n // Reverse argument reduction\r\n var cosh2_x,\r\n i = k,\r\n d8 = new Ctor(8);\r\n for (; i--;) {\r\n cosh2_x = x.times(x);\r\n x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8))));\r\n }\r\n\r\n return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic sine of the value in radians of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-Infinity, Infinity]\r\n *\r\n * sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ...\r\n *\r\n * sinh(0) = 0\r\n * sinh(-0) = -0\r\n * sinh(Infinity) = Infinity\r\n * sinh(-Infinity) = -Infinity\r\n * sinh(NaN) = NaN\r\n *\r\n * x time taken (ms)\r\n * 10 2 ms\r\n * 100 5 ms\r\n * 1000 14 ms\r\n * 10000 82 ms\r\n * 100000 886 ms 1.4033316802130615897e+43429\r\n * 200000 2613 ms\r\n * 300000 5407 ms\r\n * 400000 8824 ms\r\n * 500000 13026 ms 8.7080643612718084129e+217146\r\n * 1000000 48543 ms\r\n *\r\n * TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x))\r\n *\r\n */\r\nP.hyperbolicSine = P.sinh = function () {\r\n var k, pr, rm, len,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite() || x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;\r\n Ctor.rounding = 1;\r\n len = x.d.length;\r\n\r\n if (len < 3) {\r\n x = taylorSeries(Ctor, 2, x, x, true);\r\n } else {\r\n\r\n // Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x))\r\n // i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3))\r\n // 3 multiplications and 1 addition\r\n\r\n // Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x)))\r\n // i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5)))\r\n // 4 multiplications and 2 additions\r\n\r\n // Estimate the optimum number of times to use the argument reduction.\r\n k = 1.4 * Math.sqrt(len);\r\n k = k > 16 ? 16 : k | 0;\r\n\r\n x = x.times(1 / tinyPow(5, k));\r\n x = taylorSeries(Ctor, 2, x, x, true);\r\n\r\n // Reverse argument reduction\r\n var sinh2_x,\r\n d5 = new Ctor(5),\r\n d16 = new Ctor(16),\r\n d20 = new Ctor(20);\r\n for (; k--;) {\r\n sinh2_x = x.times(x);\r\n x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20))));\r\n }\r\n }\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return finalise(x, pr, rm, true);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-1, 1]\r\n *\r\n * tanh(x) = sinh(x) / cosh(x)\r\n *\r\n * tanh(0) = 0\r\n * tanh(-0) = -0\r\n * tanh(Infinity) = 1\r\n * tanh(-Infinity) = -1\r\n * tanh(NaN) = NaN\r\n *\r\n */\r\nP.hyperbolicTangent = P.tanh = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite()) return new Ctor(x.s);\r\n if (x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + 7;\r\n Ctor.rounding = 1;\r\n\r\n return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of\r\n * this Decimal.\r\n *\r\n * Domain: [-1, 1]\r\n * Range: [0, pi]\r\n *\r\n * acos(x) = pi/2 - asin(x)\r\n *\r\n * acos(0) = pi/2\r\n * acos(-0) = pi/2\r\n * acos(1) = 0\r\n * acos(-1) = pi\r\n * acos(1/2) = pi/3\r\n * acos(-1/2) = 2*pi/3\r\n * acos(|x| > 1) = NaN\r\n * acos(NaN) = NaN\r\n *\r\n */\r\nP.inverseCosine = P.acos = function () {\r\n var x = this,\r\n Ctor = x.constructor,\r\n k = x.abs().cmp(1),\r\n pr = Ctor.precision,\r\n rm = Ctor.rounding;\r\n\r\n if (k !== -1) {\r\n return k === 0\r\n // |x| is 1\r\n ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0)\r\n // |x| > 1 or x is NaN\r\n : new Ctor(NaN);\r\n }\r\n\r\n if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5);\r\n\r\n // TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3\r\n\r\n Ctor.precision = pr + 6;\r\n Ctor.rounding = 1;\r\n\r\n // See https://github.com/MikeMcl/decimal.js/pull/217\r\n x = new Ctor(1).minus(x).div(x.plus(1)).sqrt().atan();\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.times(2);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the\r\n * value of this Decimal.\r\n *\r\n * Domain: [1, Infinity]\r\n * Range: [0, Infinity]\r\n *\r\n * acosh(x) = ln(x + sqrt(x^2 - 1))\r\n *\r\n * acosh(x < 1) = NaN\r\n * acosh(NaN) = NaN\r\n * acosh(Infinity) = Infinity\r\n * acosh(-Infinity) = NaN\r\n * acosh(0) = NaN\r\n * acosh(-0) = NaN\r\n * acosh(1) = 0\r\n * acosh(-1) = NaN\r\n *\r\n */\r\nP.inverseHyperbolicCosine = P.acosh = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN);\r\n if (!x.isFinite()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4;\r\n Ctor.rounding = 1;\r\n external = false;\r\n\r\n x = x.times(x).minus(1).sqrt().plus(x);\r\n\r\n external = true;\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.ln();\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value\r\n * of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-Infinity, Infinity]\r\n *\r\n * asinh(x) = ln(x + sqrt(x^2 + 1))\r\n *\r\n * asinh(NaN) = NaN\r\n * asinh(Infinity) = Infinity\r\n * asinh(-Infinity) = -Infinity\r\n * asinh(0) = 0\r\n * asinh(-0) = -0\r\n *\r\n */\r\nP.inverseHyperbolicSine = P.asinh = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite() || x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6;\r\n Ctor.rounding = 1;\r\n external = false;\r\n\r\n x = x.times(x).plus(1).sqrt().plus(x);\r\n\r\n external = true;\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.ln();\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the\r\n * value of this Decimal.\r\n *\r\n * Domain: [-1, 1]\r\n * Range: [-Infinity, Infinity]\r\n *\r\n * atanh(x) = 0.5 * ln((1 + x) / (1 - x))\r\n *\r\n * atanh(|x| > 1) = NaN\r\n * atanh(NaN) = NaN\r\n * atanh(Infinity) = NaN\r\n * atanh(-Infinity) = NaN\r\n * atanh(0) = 0\r\n * atanh(-0) = -0\r\n * atanh(1) = Infinity\r\n * atanh(-1) = -Infinity\r\n *\r\n */\r\nP.inverseHyperbolicTangent = P.atanh = function () {\r\n var pr, rm, wpr, xsd,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite()) return new Ctor(NaN);\r\n if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n xsd = x.sd();\r\n\r\n if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true);\r\n\r\n Ctor.precision = wpr = xsd - x.e;\r\n\r\n x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1);\r\n\r\n Ctor.precision = pr + 4;\r\n Ctor.rounding = 1;\r\n\r\n x = x.ln();\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.times(0.5);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-pi/2, pi/2]\r\n *\r\n * asin(x) = 2*atan(x/(1 + sqrt(1 - x^2)))\r\n *\r\n * asin(0) = 0\r\n * asin(-0) = -0\r\n * asin(1/2) = pi/6\r\n * asin(-1/2) = -pi/6\r\n * asin(1) = pi/2\r\n * asin(-1) = -pi/2\r\n * asin(|x| > 1) = NaN\r\n * asin(NaN) = NaN\r\n *\r\n * TODO? Compare performance of Taylor series.\r\n *\r\n */\r\nP.inverseSine = P.asin = function () {\r\n var halfPi, k,\r\n pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (x.isZero()) return new Ctor(x);\r\n\r\n k = x.abs().cmp(1);\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n\r\n if (k !== -1) {\r\n\r\n // |x| is 1\r\n if (k === 0) {\r\n halfPi = getPi(Ctor, pr + 4, rm).times(0.5);\r\n halfPi.s = x.s;\r\n return halfPi;\r\n }\r\n\r\n // |x| > 1 or x is NaN\r\n return new Ctor(NaN);\r\n }\r\n\r\n // TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6\r\n\r\n Ctor.precision = pr + 6;\r\n Ctor.rounding = 1;\r\n\r\n x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan();\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.times(2);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value\r\n * of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-pi/2, pi/2]\r\n *\r\n * atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...\r\n *\r\n * atan(0) = 0\r\n * atan(-0) = -0\r\n * atan(1) = pi/4\r\n * atan(-1) = -pi/4\r\n * atan(Infinity) = pi/2\r\n * atan(-Infinity) = -pi/2\r\n * atan(NaN) = NaN\r\n *\r\n */\r\nP.inverseTangent = P.atan = function () {\r\n var i, j, k, n, px, t, r, wpr, x2,\r\n x = this,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision,\r\n rm = Ctor.rounding;\r\n\r\n if (!x.isFinite()) {\r\n if (!x.s) return new Ctor(NaN);\r\n if (pr + 4 <= PI_PRECISION) {\r\n r = getPi(Ctor, pr + 4, rm).times(0.5);\r\n r.s = x.s;\r\n return r;\r\n }\r\n } else if (x.isZero()) {\r\n return new Ctor(x);\r\n } else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) {\r\n r = getPi(Ctor, pr + 4, rm).times(0.25);\r\n r.s = x.s;\r\n return r;\r\n }\r\n\r\n Ctor.precision = wpr = pr + 10;\r\n Ctor.rounding = 1;\r\n\r\n // TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x);\r\n\r\n // Argument reduction\r\n // Ensure |x| < 0.42\r\n // atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2)))\r\n\r\n k = Math.min(28, wpr / LOG_BASE + 2 | 0);\r\n\r\n for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1));\r\n\r\n external = false;\r\n\r\n j = Math.ceil(wpr / LOG_BASE);\r\n n = 1;\r\n x2 = x.times(x);\r\n r = new Ctor(x);\r\n px = x;\r\n\r\n // atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...\r\n for (; i !== -1;) {\r\n px = px.times(x2);\r\n t = r.minus(px.div(n += 2));\r\n\r\n px = px.times(x2);\r\n r = t.plus(px.div(n += 2));\r\n\r\n if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--;);\r\n }\r\n\r\n if (k) r = r.times(2 << (k - 1));\r\n\r\n external = true;\r\n\r\n return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true);\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is a finite number, otherwise return false.\r\n *\r\n */\r\nP.isFinite = function () {\r\n return !!this.d;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is an integer, otherwise return false.\r\n *\r\n */\r\nP.isInteger = P.isInt = function () {\r\n return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is NaN, otherwise return false.\r\n *\r\n */\r\nP.isNaN = function () {\r\n return !this.s;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is negative, otherwise return false.\r\n *\r\n */\r\nP.isNegative = P.isNeg = function () {\r\n return this.s < 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is positive, otherwise return false.\r\n *\r\n */\r\nP.isPositive = P.isPos = function () {\r\n return this.s > 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is 0 or -0, otherwise return false.\r\n *\r\n */\r\nP.isZero = function () {\r\n return !!this.d && this.d[0] === 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is less than `y`, otherwise return false.\r\n *\r\n */\r\nP.lessThan = P.lt = function (y) {\r\n return this.cmp(y) < 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false.\r\n *\r\n */\r\nP.lessThanOrEqualTo = P.lte = function (y) {\r\n return this.cmp(y) < 1;\r\n};\r\n\r\n\r\n/*\r\n * Return the logarithm of the value of this Decimal to the specified base, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * If no base is specified, return log[10](arg).\r\n *\r\n * log[base](arg) = ln(arg) / ln(base)\r\n *\r\n * The result will always be correctly rounded if the base of the log is 10, and 'almost always'\r\n * otherwise:\r\n *\r\n * Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen\r\n * rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error\r\n * between the result and the correctly rounded result will be one ulp (unit in the last place).\r\n *\r\n * log[-b](a) = NaN\r\n * log[0](a) = NaN\r\n * log[1](a) = NaN\r\n * log[NaN](a) = NaN\r\n * log[Infinity](a) = NaN\r\n * log[b](0) = -Infinity\r\n * log[b](-0) = -Infinity\r\n * log[b](-a) = NaN\r\n * log[b](1) = 0\r\n * log[b](Infinity) = Infinity\r\n * log[b](NaN) = NaN\r\n *\r\n * [base] {number|string|bigint|Decimal} The base of the logarithm.\r\n *\r\n */\r\nP.logarithm = P.log = function (base) {\r\n var isBase10, d, denominator, k, inf, num, sd, r,\r\n arg = this,\r\n Ctor = arg.constructor,\r\n pr = Ctor.precision,\r\n rm = Ctor.rounding,\r\n guard = 5;\r\n\r\n // Default base is 10.\r\n if (base == null) {\r\n base = new Ctor(10);\r\n isBase10 = true;\r\n } else {\r\n base = new Ctor(base);\r\n d = base.d;\r\n\r\n // Return NaN if base is negative, or non-finite, or is 0 or 1.\r\n if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN);\r\n\r\n isBase10 = base.eq(10);\r\n }\r\n\r\n d = arg.d;\r\n\r\n // Is arg negative, non-finite, 0 or 1?\r\n if (arg.s < 0 || !d || !d[0] || arg.eq(1)) {\r\n return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0);\r\n }\r\n\r\n // The result will have a non-terminating decimal expansion if base is 10 and arg is not an\r\n // integer power of 10.\r\n if (isBase10) {\r\n if (d.length > 1) {\r\n inf = true;\r\n } else {\r\n for (k = d[0]; k % 10 === 0;) k /= 10;\r\n inf = k !== 1;\r\n }\r\n }\r\n\r\n external = false;\r\n sd = pr + guard;\r\n num = naturalLogarithm(arg, sd);\r\n denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);\r\n\r\n // The result will have 5 rounding digits.\r\n r = divide(num, denominator, sd, 1);\r\n\r\n // If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,\r\n // calculate 10 further digits.\r\n //\r\n // If the result is known to have an infinite decimal expansion, repeat this until it is clear\r\n // that the result is above or below the boundary. Otherwise, if after calculating the 10\r\n // further digits, the last 14 are nines, round up and assume the result is exact.\r\n // Also assume the result is exact if the last 14 are zero.\r\n //\r\n // Example of a result that will be incorrectly rounded:\r\n // log[1048576](4503599627370502) = 2.60000000000000009610279511444746...\r\n // The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it\r\n // will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so\r\n // the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal\r\n // place is still 2.6.\r\n if (checkRoundingDigits(r.d, k = pr, rm)) {\r\n\r\n do {\r\n sd += 10;\r\n num = naturalLogarithm(arg, sd);\r\n denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);\r\n r = divide(num, denominator, sd, 1);\r\n\r\n if (!inf) {\r\n\r\n // Check for 14 nines from the 2nd rounding digit, as the first may be 4.\r\n if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) {\r\n r = finalise(r, pr + 1, 0);\r\n }\r\n\r\n break;\r\n }\r\n } while (checkRoundingDigits(r.d, k += 10, rm));\r\n }\r\n\r\n external = true;\r\n\r\n return finalise(r, pr, rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal.\r\n *\r\n * arguments {number|string|bigint|Decimal}\r\n *\r\nP.max = function () {\r\n Array.prototype.push.call(arguments, this);\r\n return maxOrMin(this.constructor, arguments, -1);\r\n};\r\n */\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal.\r\n *\r\n * arguments {number|string|bigint|Decimal}\r\n *\r\nP.min = function () {\r\n Array.prototype.push.call(arguments, this);\r\n return maxOrMin(this.constructor, arguments, 1);\r\n};\r\n */\r\n\r\n\r\n/*\r\n * n - 0 = n\r\n * n - N = N\r\n * n - I = -I\r\n * 0 - n = -n\r\n * 0 - 0 = 0\r\n * 0 - N = N\r\n * 0 - I = -I\r\n * N - n = N\r\n * N - 0 = N\r\n * N - N = N\r\n * N - I = N\r\n * I - n = I\r\n * I - 0 = I\r\n * I - N = N\r\n * I - I = N\r\n *\r\n * Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.minus = P.sub = function (y) {\r\n var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n y = new Ctor(y);\r\n\r\n // If either is not finite...\r\n if (!x.d || !y.d) {\r\n\r\n // Return NaN if either is NaN.\r\n if (!x.s || !y.s) y = new Ctor(NaN);\r\n\r\n // Return y negated if x is finite and y is ±Infinity.\r\n else if (x.d) y.s = -y.s;\r\n\r\n // Return x if y is finite and x is ±Infinity.\r\n // Return x if both are ±Infinity with different signs.\r\n // Return NaN if both are ±Infinity with the same sign.\r\n else y = new Ctor(y.d || x.s !== y.s ? x : NaN);\r\n\r\n return y;\r\n }\r\n\r\n // If signs differ...\r\n if (x.s != y.s) {\r\n y.s = -y.s;\r\n return x.plus(y);\r\n }\r\n\r\n xd = x.d;\r\n yd = y.d;\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n\r\n // If either is zero...\r\n if (!xd[0] || !yd[0]) {\r\n\r\n // Return y negated if x is zero and y is non-zero.\r\n if (yd[0]) y.s = -y.s;\r\n\r\n // Return x if y is zero and x is non-zero.\r\n else if (xd[0]) y = new Ctor(x);\r\n\r\n // Return zero if both are zero.\r\n // From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity.\r\n else return new Ctor(rm === 3 ? -0 : 0);\r\n\r\n return external ? finalise(y, pr, rm) : y;\r\n }\r\n\r\n // x and y are finite, non-zero numbers with the same sign.\r\n\r\n // Calculate base 1e7 exponents.\r\n e = mathfloor(y.e / LOG_BASE);\r\n xe = mathfloor(x.e / LOG_BASE);\r\n\r\n xd = xd.slice();\r\n k = xe - e;\r\n\r\n // If base 1e7 exponents differ...\r\n if (k) {\r\n xLTy = k < 0;\r\n\r\n if (xLTy) {\r\n d = xd;\r\n k = -k;\r\n len = yd.length;\r\n } else {\r\n d = yd;\r\n e = xe;\r\n len = xd.length;\r\n }\r\n\r\n // Numbers with massively different exponents would result in a very high number of\r\n // zeros needing to be prepended, but this can be avoided while still ensuring correct\r\n // rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`.\r\n i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;\r\n\r\n if (k > i) {\r\n k = i;\r\n d.length = 1;\r\n }\r\n\r\n // Prepend zeros to equalise exponents.\r\n d.reverse();\r\n for (i = k; i--;) d.push(0);\r\n d.reverse();\r\n\r\n // Base 1e7 exponents equal.\r\n } else {\r\n\r\n // Check digits to determine which is the bigger number.\r\n\r\n i = xd.length;\r\n len = yd.length;\r\n xLTy = i < len;\r\n if (xLTy) len = i;\r\n\r\n for (i = 0; i < len; i++) {\r\n if (xd[i] != yd[i]) {\r\n xLTy = xd[i] < yd[i];\r\n break;\r\n }\r\n }\r\n\r\n k = 0;\r\n }\r\n\r\n if (xLTy) {\r\n d = xd;\r\n xd = yd;\r\n yd = d;\r\n y.s = -y.s;\r\n }\r\n\r\n len = xd.length;\r\n\r\n // Append zeros to `xd` if shorter.\r\n // Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length.\r\n for (i = yd.length - len; i > 0; --i) xd[len++] = 0;\r\n\r\n // Subtract yd from xd.\r\n for (i = yd.length; i > k;) {\r\n\r\n if (xd[--i] < yd[i]) {\r\n for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1;\r\n --xd[j];\r\n xd[i] += BASE;\r\n }\r\n\r\n xd[i] -= yd[i];\r\n }\r\n\r\n // Remove trailing zeros.\r\n for (; xd[--len] === 0;) xd.pop();\r\n\r\n // Remove leading zeros and adjust exponent accordingly.\r\n for (; xd[0] === 0; xd.shift()) --e;\r\n\r\n // Zero?\r\n if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0);\r\n\r\n y.d = xd;\r\n y.e = getBase10Exponent(xd, e);\r\n\r\n return external ? finalise(y, pr, rm) : y;\r\n};\r\n\r\n\r\n/*\r\n * n % 0 = N\r\n * n % N = N\r\n * n % I = n\r\n * 0 % n = 0\r\n * -0 % n = -0\r\n * 0 % 0 = N\r\n * 0 % N = N\r\n * 0 % I = 0\r\n * N % n = N\r\n * N % 0 = N\r\n * N % N = N\r\n * N % I = N\r\n * I % n = N\r\n * I % 0 = N\r\n * I % N = N\r\n * I % I = N\r\n *\r\n * Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * The result depends on the modulo mode.\r\n *\r\n */\r\nP.modulo = P.mod = function (y) {\r\n var q,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n y = new Ctor(y);\r\n\r\n // Return NaN if x is ±Infinity or NaN, or y is NaN or ±0.\r\n if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN);\r\n\r\n // Return x if y is ±Infinity or x is ±0.\r\n if (!y.d || x.d && !x.d[0]) {\r\n return finalise(new Ctor(x), Ctor.precision, Ctor.rounding);\r\n }\r\n\r\n // Prevent rounding of intermediate calculations.\r\n external = false;\r\n\r\n if (Ctor.modulo == 9) {\r\n\r\n // Euclidian division: q = sign(y) * floor(x / abs(y))\r\n // result = x - q * y where 0 <= result < abs(y)\r\n q = divide(x, y.abs(), 0, 3, 1);\r\n q.s *= y.s;\r\n } else {\r\n q = divide(x, y, 0, Ctor.modulo, 1);\r\n }\r\n\r\n q = q.times(y);\r\n\r\n external = true;\r\n\r\n return x.minus(q);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the natural exponential of the value of this Decimal,\r\n * i.e. the base e raised to the power the value of this Decimal, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.naturalExponential = P.exp = function () {\r\n return naturalExponential(this);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the natural logarithm of the value of this Decimal,\r\n * rounded to `precision` significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.naturalLogarithm = P.ln = function () {\r\n return naturalLogarithm(this);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by\r\n * -1.\r\n *\r\n */\r\nP.negated = P.neg = function () {\r\n var x = new this.constructor(this);\r\n x.s = -x.s;\r\n return finalise(x);\r\n};\r\n\r\n\r\n/*\r\n * n + 0 = n\r\n * n + N = N\r\n * n + I = I\r\n * 0 + n = n\r\n * 0 + 0 = 0\r\n * 0 + N = N\r\n * 0 + I = I\r\n * N + n = N\r\n * N + 0 = N\r\n * N + N = N\r\n * N + I = N\r\n * I + n = I\r\n * I + 0 = I\r\n * I + N = N\r\n * I + I = I\r\n *\r\n * Return a new Decimal whose value is the value of this Decimal plus `y`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.plus = P.add = function (y) {\r\n var carry, d, e, i, k, len, pr, rm, xd, yd,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n y = new Ctor(y);\r\n\r\n // If either is not finite...\r\n if (!x.d || !y.d) {\r\n\r\n // Return NaN if either is NaN.\r\n if (!x.s || !y.s) y = new Ctor(NaN);\r\n\r\n // Return x if y is finite and x is ±Infinity.\r\n // Return x if both are ±Infinity with the same sign.\r\n // Return NaN if both are ±Infinity with different signs.\r\n // Return y if x is finite and y is ±Infinity.\r\n else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN);\r\n\r\n return y;\r\n }\r\n\r\n // If signs differ...\r\n if (x.s != y.s) {\r\n y.s = -y.s;\r\n return x.minus(y);\r\n }\r\n\r\n xd = x.d;\r\n yd = y.d;\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n\r\n // If either is zero...\r\n if (!xd[0] || !yd[0]) {\r\n\r\n // Return x if y is zero.\r\n // Return y if y is non-zero.\r\n if (!yd[0]) y = new Ctor(x);\r\n\r\n return external ? finalise(y, pr, rm) : y;\r\n }\r\n\r\n // x and y are finite, non-zero numbers with the same sign.\r\n\r\n // Calculate base 1e7 exponents.\r\n k = mathfloor(x.e / LOG_BASE);\r\n e = mathfloor(y.e / LOG_BASE);\r\n\r\n xd = xd.slice();\r\n i = k - e;\r\n\r\n // If base 1e7 exponents differ...\r\n if (i) {\r\n\r\n if (i < 0) {\r\n d = xd;\r\n i = -i;\r\n len = yd.length;\r\n } else {\r\n d = yd;\r\n e = k;\r\n len = xd.length;\r\n }\r\n\r\n // Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.\r\n k = Math.ceil(pr / LOG_BASE);\r\n len = k > len ? k + 1 : len + 1;\r\n\r\n if (i > len) {\r\n i = len;\r\n d.length = 1;\r\n }\r\n\r\n // Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.\r\n d.reverse();\r\n for (; i--;) d.push(0);\r\n d.reverse();\r\n }\r\n\r\n len = xd.length;\r\n i = yd.length;\r\n\r\n // If yd is longer than xd, swap xd and yd so xd points to the longer array.\r\n if (len - i < 0) {\r\n i = len;\r\n d = yd;\r\n yd = xd;\r\n xd = d;\r\n }\r\n\r\n // Only start adding at yd.length - 1 as the further digits of xd can be left as they are.\r\n for (carry = 0; i;) {\r\n carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0;\r\n xd[i] %= BASE;\r\n }\r\n\r\n if (carry) {\r\n xd.unshift(carry);\r\n ++e;\r\n }\r\n\r\n // Remove trailing zeros.\r\n // No need to check for zero, as +x + +y != 0 && -x + -y != 0\r\n for (len = xd.length; xd[--len] == 0;) xd.pop();\r\n\r\n y.d = xd;\r\n y.e = getBase10Exponent(xd, e);\r\n\r\n return external ? finalise(y, pr, rm) : y;\r\n};\r\n\r\n\r\n/*\r\n * Return the number of significant digits of the value of this Decimal.\r\n *\r\n * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.\r\n *\r\n */\r\nP.precision = P.sd = function (z) {\r\n var k,\r\n x = this;\r\n\r\n if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z);\r\n\r\n if (x.d) {\r\n k = getPrecision(x.d);\r\n if (z && x.e + 1 > k) k = x.e + 1;\r\n } else {\r\n k = NaN;\r\n }\r\n\r\n return k;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using\r\n * rounding mode `rounding`.\r\n *\r\n */\r\nP.round = function () {\r\n var x = this,\r\n Ctor = x.constructor;\r\n\r\n return finalise(new Ctor(x), x.e + 1, Ctor.rounding);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the sine of the value in radians of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-1, 1]\r\n *\r\n * sin(x) = x - x^3/3! + x^5/5! - ...\r\n *\r\n * sin(0) = 0\r\n * sin(-0) = -0\r\n * sin(Infinity) = NaN\r\n * sin(-Infinity) = NaN\r\n * sin(NaN) = NaN\r\n *\r\n */\r\nP.sine = P.sin = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite()) return new Ctor(NaN);\r\n if (x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;\r\n Ctor.rounding = 1;\r\n\r\n x = sine(Ctor, toLessThanHalfPi(Ctor, x));\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the square root of this Decimal, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * sqrt(-n) = N\r\n * sqrt(N) = N\r\n * sqrt(-I) = N\r\n * sqrt(I) = I\r\n * sqrt(0) = 0\r\n * sqrt(-0) = -0\r\n *\r\n */\r\nP.squareRoot = P.sqrt = function () {\r\n var m, n, sd, r, rep, t,\r\n x = this,\r\n d = x.d,\r\n e = x.e,\r\n s = x.s,\r\n Ctor = x.constructor;\r\n\r\n // Negative/NaN/Infinity/zero?\r\n if (s !== 1 || !d || !d[0]) {\r\n return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0);\r\n }\r\n\r\n external = false;\r\n\r\n // Initial estimate.\r\n s = Math.sqrt(+x);\r\n\r\n // Math.sqrt underflow/overflow?\r\n // Pass x to Math.sqrt as integer, then adjust the exponent of the result.\r\n if (s == 0 || s == 1 / 0) {\r\n n = digitsToString(d);\r\n\r\n if ((n.length + e) % 2 == 0) n += '0';\r\n s = Math.sqrt(n);\r\n e = mathfloor((e + 1) / 2) - (e < 0 || e % 2);\r\n\r\n if (s == 1 / 0) {\r\n n = '5e' + e;\r\n } else {\r\n n = s.toExponential();\r\n n = n.slice(0, n.indexOf('e') + 1) + e;\r\n }\r\n\r\n r = new Ctor(n);\r\n } else {\r\n r = new Ctor(s.toString());\r\n }\r\n\r\n sd = (e = Ctor.precision) + 3;\r\n\r\n // Newton-Raphson iteration.\r\n for (;;) {\r\n t = r;\r\n r = t.plus(divide(x, t, sd + 2, 1)).times(0.5);\r\n\r\n // TODO? Replace with for-loop and checkRoundingDigits.\r\n if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {\r\n n = n.slice(sd - 3, sd + 1);\r\n\r\n // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or\r\n // 4999, i.e. approaching a rounding boundary, continue the iteration.\r\n if (n == '9999' || !rep && n == '4999') {\r\n\r\n // On the first iteration only, check to see if rounding up gives the exact result as the\r\n // nines may infinitely repeat.\r\n if (!rep) {\r\n finalise(t, e + 1, 0);\r\n\r\n if (t.times(t).eq(x)) {\r\n r = t;\r\n break;\r\n }\r\n }\r\n\r\n sd += 4;\r\n rep = 1;\r\n } else {\r\n\r\n // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.\r\n // If not, then there are further digits and m will be truthy.\r\n if (!+n || !+n.slice(1) && n.charAt(0) == '5') {\r\n\r\n // Truncate to the first rounding digit.\r\n finalise(r, e + 1, 1);\r\n m = !r.times(r).eq(x);\r\n }\r\n\r\n break;\r\n }\r\n }\r\n }\r\n\r\n external = true;\r\n\r\n return finalise(r, e, Ctor.rounding, m);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the tangent of the value in radians of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-Infinity, Infinity]\r\n *\r\n * tan(0) = 0\r\n * tan(-0) = -0\r\n * tan(Infinity) = NaN\r\n * tan(-Infinity) = NaN\r\n * tan(NaN) = NaN\r\n *\r\n */\r\nP.tangent = P.tan = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite()) return new Ctor(NaN);\r\n if (x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + 10;\r\n Ctor.rounding = 1;\r\n\r\n x = x.sin();\r\n x.s = 1;\r\n x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0);\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true);\r\n};\r\n\r\n\r\n/*\r\n * n * 0 = 0\r\n * n * N = N\r\n * n * I = I\r\n * 0 * n = 0\r\n * 0 * 0 = 0\r\n * 0 * N = N\r\n * 0 * I = N\r\n * N * n = N\r\n * N * 0 = N\r\n * N * N = N\r\n * N * I = N\r\n * I * n = I\r\n * I * 0 = N\r\n * I * N = N\r\n * I * I = I\r\n *\r\n * Return a new Decimal whose value is this Decimal times `y`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.times = P.mul = function (y) {\r\n var carry, e, i, k, r, rL, t, xdL, ydL,\r\n x = this,\r\n Ctor = x.constructor,\r\n xd = x.d,\r\n yd = (y = new Ctor(y)).d;\r\n\r\n y.s *= x.s;\r\n\r\n // If either is NaN, ±Infinity or ±0...\r\n if (!xd || !xd[0] || !yd || !yd[0]) {\r\n\r\n return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd\r\n\r\n // Return NaN if either is NaN.\r\n // Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity.\r\n ? NaN\r\n\r\n // Return ±Infinity if either is ±Infinity.\r\n // Return ±0 if either is ±0.\r\n : !xd || !yd ? y.s / 0 : y.s * 0);\r\n }\r\n\r\n e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE);\r\n xdL = xd.length;\r\n ydL = yd.length;\r\n\r\n // Ensure xd points to the longer array.\r\n if (xdL < ydL) {\r\n r = xd;\r\n xd = yd;\r\n yd = r;\r\n rL = xdL;\r\n xdL = ydL;\r\n ydL = rL;\r\n }\r\n\r\n // Initialise the result array with zeros.\r\n r = [];\r\n rL = xdL + ydL;\r\n for (i = rL; i--;) r.push(0);\r\n\r\n // Multiply!\r\n for (i = ydL; --i >= 0;) {\r\n carry = 0;\r\n for (k = xdL + i; k > i;) {\r\n t = r[k] + yd[i] * xd[k - i - 1] + carry;\r\n r[k--] = t % BASE | 0;\r\n carry = t / BASE | 0;\r\n }\r\n\r\n r[k] = (r[k] + carry) % BASE | 0;\r\n }\r\n\r\n // Remove trailing zeros.\r\n for (; !r[--rL];) r.pop();\r\n\r\n if (carry) ++e;\r\n else r.shift();\r\n\r\n y.d = r;\r\n y.e = getBase10Exponent(r, e);\r\n\r\n return external ? finalise(y, Ctor.precision, Ctor.rounding) : y;\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal in base 2, round to `sd` significant\r\n * digits using rounding mode `rm`.\r\n *\r\n * If the optional `sd` argument is present then return binary exponential notation.\r\n *\r\n * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\nP.toBinary = function (sd, rm) {\r\n return toStringBinary(this, 2, sd, rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp`\r\n * decimal places using rounding mode `rm` or `rounding` if `rm` is omitted.\r\n *\r\n * If `dp` is omitted, return a new Decimal whose value is the value of this Decimal.\r\n *\r\n * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\nP.toDecimalPlaces = P.toDP = function (dp, rm) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n\r\n x = new Ctor(x);\r\n if (dp === void 0) return x;\r\n\r\n checkInt32(dp, 0, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n return finalise(x, dp + x.e + 1, rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal in exponential notation rounded to\r\n * `dp` fixed decimal places using rounding mode `rounding`.\r\n *\r\n * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\nP.toExponential = function (dp, rm) {\r\n var str,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (dp === void 0) {\r\n str = finiteToString(x, true);\r\n } else {\r\n checkInt32(dp, 0, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n x = finalise(new Ctor(x), dp + 1, rm);\r\n str = finiteToString(x, true, dp + 1);\r\n }\r\n\r\n return x.isNeg() && !x.isZero() ? '-' + str : str;\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal in normal (fixed-point) notation to\r\n * `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is\r\n * omitted.\r\n *\r\n * As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'.\r\n *\r\n * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.\r\n * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.\r\n * (-0).toFixed(3) is '0.000'.\r\n * (-0.5).toFixed(0) is '-0'.\r\n *\r\n */\r\nP.toFixed = function (dp, rm) {\r\n var str, y,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (dp === void 0) {\r\n str = finiteToString(x);\r\n } else {\r\n checkInt32(dp, 0, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n y = finalise(new Ctor(x), dp + x.e + 1, rm);\r\n str = finiteToString(y, false, dp + y.e + 1);\r\n }\r\n\r\n // To determine whether to add the minus sign look at the value before it was rounded,\r\n // i.e. look at `x` rather than `y`.\r\n return x.isNeg() && !x.isZero() ? '-' + str : str;\r\n};\r\n\r\n\r\n/*\r\n * Return an array representing the value of this Decimal as a simple fraction with an integer\r\n * numerator and an integer denominator.\r\n *\r\n * The denominator will be a positive non-zero value less than or equal to the specified maximum\r\n * denominator. If a maximum denominator is not specified, the denominator will be the lowest\r\n * value necessary to represent the number exactly.\r\n *\r\n * [maxD] {number|string|bigint|Decimal} Maximum denominator. Integer >= 1 and < Infinity.\r\n *\r\n */\r\nP.toFraction = function (maxD) {\r\n var d, d0, d1, d2, e, k, n, n0, n1, pr, q, r,\r\n x = this,\r\n xd = x.d,\r\n Ctor = x.constructor;\r\n\r\n if (!xd) return new Ctor(x);\r\n\r\n n1 = d0 = new Ctor(1);\r\n d1 = n0 = new Ctor(0);\r\n\r\n d = new Ctor(d1);\r\n e = d.e = getPrecision(xd) - x.e - 1;\r\n k = e % LOG_BASE;\r\n d.d[0] = mathpow(10, k < 0 ? LOG_BASE + k : k);\r\n\r\n if (maxD == null) {\r\n\r\n // d is 10**e, the minimum max-denominator needed.\r\n maxD = e > 0 ? d : n1;\r\n } else {\r\n n = new Ctor(maxD);\r\n if (!n.isInt() || n.lt(n1)) throw Error(invalidArgument + n);\r\n maxD = n.gt(d) ? (e > 0 ? d : n1) : n;\r\n }\r\n\r\n external = false;\r\n n = new Ctor(digitsToString(xd));\r\n pr = Ctor.precision;\r\n Ctor.precision = e = xd.length * LOG_BASE * 2;\r\n\r\n for (;;) {\r\n q = divide(n, d, 0, 1, 1);\r\n d2 = d0.plus(q.times(d1));\r\n if (d2.cmp(maxD) == 1) break;\r\n d0 = d1;\r\n d1 = d2;\r\n d2 = n1;\r\n n1 = n0.plus(q.times(d2));\r\n n0 = d2;\r\n d2 = d;\r\n d = n.minus(q.times(d2));\r\n n = d2;\r\n }\r\n\r\n d2 = divide(maxD.minus(d0), d1, 0, 1, 1);\r\n n0 = n0.plus(d2.times(n1));\r\n d0 = d0.plus(d2.times(d1));\r\n n0.s = n1.s = x.s;\r\n\r\n // Determine which fraction is closer to x, n0/d0 or n1/d1?\r\n r = divide(n1, d1, e, 1).minus(x).abs().cmp(divide(n0, d0, e, 1).minus(x).abs()) < 1\r\n ? [n1, d1] : [n0, d0];\r\n\r\n Ctor.precision = pr;\r\n external = true;\r\n\r\n return r;\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal in base 16, round to `sd` significant\r\n * digits using rounding mode `rm`.\r\n *\r\n * If the optional `sd` argument is present then return binary exponential notation.\r\n *\r\n * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\nP.toHexadecimal = P.toHex = function (sd, rm) {\r\n return toStringBinary(this, 16, sd, rm);\r\n};\r\n\r\n\r\n/*\r\n * Returns a new Decimal whose value is the nearest multiple of `y` in the direction of rounding\r\n * mode `rm`, or `Decimal.rounding` if `rm` is omitted, to the value of this Decimal.\r\n *\r\n * The return value will always have the same sign as this Decimal, unless either this Decimal\r\n * or `y` is NaN, in which case the return value will be also be NaN.\r\n *\r\n * The return value is not affected by the value of `precision`.\r\n *\r\n * y {number|string|bigint|Decimal} The magnitude to round to a multiple of.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n * 'toNearest() rounding mode not an integer: {rm}'\r\n * 'toNearest() rounding mode out of range: {rm}'\r\n *\r\n */\r\nP.toNearest = function (y, rm) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n\r\n x = new Ctor(x);\r\n\r\n if (y == null) {\r\n\r\n // If x is not finite, return x.\r\n if (!x.d) return x;\r\n\r\n y = new Ctor(1);\r\n rm = Ctor.rounding;\r\n } else {\r\n y = new Ctor(y);\r\n if (rm === void 0) {\r\n rm = Ctor.rounding;\r\n } else {\r\n checkInt32(rm, 0, 8);\r\n }\r\n\r\n // If x is not finite, return x if y is not NaN, else NaN.\r\n if (!x.d) return y.s ? x : y;\r\n\r\n // If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN.\r\n if (!y.d) {\r\n if (y.s) y.s = x.s;\r\n return y;\r\n }\r\n }\r\n\r\n // If y is not zero, calculate the nearest multiple of y to x.\r\n if (y.d[0]) {\r\n external = false;\r\n x = divide(x, y, 0, rm, 1).times(y);\r\n external = true;\r\n finalise(x);\r\n\r\n // If y is zero, return zero with the sign of x.\r\n } else {\r\n y.s = x.s;\r\n x = y;\r\n }\r\n\r\n return x;\r\n};\r\n\r\n\r\n/*\r\n * Return the value of this Decimal converted to a number primitive.\r\n * Zero keeps its sign.\r\n *\r\n */\r\nP.toNumber = function () {\r\n return +this;\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal in base 8, round to `sd` significant\r\n * digits using rounding mode `rm`.\r\n *\r\n * If the optional `sd` argument is present then return binary exponential notation.\r\n *\r\n * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\nP.toOctal = function (sd, rm) {\r\n return toStringBinary(this, 8, sd, rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal raised to the power `y`, rounded\r\n * to `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * ECMAScript compliant.\r\n *\r\n * pow(x, NaN) = NaN\r\n * pow(x, ±0) = 1\r\n\r\n * pow(NaN, non-zero) = NaN\r\n * pow(abs(x) > 1, +Infinity) = +Infinity\r\n * pow(abs(x) > 1, -Infinity) = +0\r\n * pow(abs(x) == 1, ±Infinity) = NaN\r\n * pow(abs(x) < 1, +Infinity) = +0\r\n * pow(abs(x) < 1, -Infinity) = +Infinity\r\n * pow(+Infinity, y > 0) = +Infinity\r\n * pow(+Infinity, y < 0) = +0\r\n * pow(-Infinity, odd integer > 0) = -Infinity\r\n * pow(-Infinity, even integer > 0) = +Infinity\r\n * pow(-Infinity, odd integer < 0) = -0\r\n * pow(-Infinity, even integer < 0) = +0\r\n * pow(+0, y > 0) = +0\r\n * pow(+0, y < 0) = +Infinity\r\n * pow(-0, odd integer > 0) = -0\r\n * pow(-0, even integer > 0) = +0\r\n * pow(-0, odd integer < 0) = -Infinity\r\n * pow(-0, even integer < 0) = +Infinity\r\n * pow(finite x < 0, finite non-integer) = NaN\r\n *\r\n * For non-integer or very large exponents pow(x, y) is calculated using\r\n *\r\n * x^y = exp(y*ln(x))\r\n *\r\n * Assuming the first 15 rounding digits are each equally likely to be any digit 0-9, the\r\n * probability of an incorrectly rounded result\r\n * P([49]9{14} | [50]0{14}) = 2 * 0.2 * 10^-14 = 4e-15 = 1/2.5e+14\r\n * i.e. 1 in 250,000,000,000,000\r\n *\r\n * If a result is incorrectly rounded the maximum error will be 1 ulp (unit in last place).\r\n *\r\n * y {number|string|bigint|Decimal} The power to which to raise this Decimal.\r\n *\r\n */\r\nP.toPower = P.pow = function (y) {\r\n var e, k, pr, r, rm, s,\r\n x = this,\r\n Ctor = x.constructor,\r\n yn = +(y = new Ctor(y));\r\n\r\n // Either ±Infinity, NaN or ±0?\r\n if (!x.d || !y.d || !x.d[0] || !y.d[0]) return new Ctor(mathpow(+x, yn));\r\n\r\n x = new Ctor(x);\r\n\r\n if (x.eq(1)) return x;\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n\r\n if (y.eq(1)) return finalise(x, pr, rm);\r\n\r\n // y exponent\r\n e = mathfloor(y.e / LOG_BASE);\r\n\r\n // If y is a small integer use the 'exponentiation by squaring' algorithm.\r\n if (e >= y.d.length - 1 && (k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {\r\n r = intPow(Ctor, x, k, pr);\r\n return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm);\r\n }\r\n\r\n s = x.s;\r\n\r\n // if x is negative\r\n if (s < 0) {\r\n\r\n // if y is not an integer\r\n if (e < y.d.length - 1) return new Ctor(NaN);\r\n\r\n // Result is positive if x is negative and the last digit of integer y is even.\r\n if ((y.d[e] & 1) == 0) s = 1;\r\n\r\n // if x.eq(-1)\r\n if (x.e == 0 && x.d[0] == 1 && x.d.length == 1) {\r\n x.s = s;\r\n return x;\r\n }\r\n }\r\n\r\n // Estimate result exponent.\r\n // x^y = 10^e, where e = y * log10(x)\r\n // log10(x) = log10(x_significand) + x_exponent\r\n // log10(x_significand) = ln(x_significand) / ln(10)\r\n k = mathpow(+x, yn);\r\n e = k == 0 || !isFinite(k)\r\n ? mathfloor(yn * (Math.log('0.' + digitsToString(x.d)) / Math.LN10 + x.e + 1))\r\n : new Ctor(k + '').e;\r\n\r\n // Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1.\r\n\r\n // Overflow/underflow?\r\n if (e > Ctor.maxE + 1 || e < Ctor.minE - 1) return new Ctor(e > 0 ? s / 0 : 0);\r\n\r\n external = false;\r\n Ctor.rounding = x.s = 1;\r\n\r\n // Estimate the extra guard digits needed to ensure five correct rounding digits from\r\n // naturalLogarithm(x). Example of failure without these extra digits (precision: 10):\r\n // new Decimal(2.32456).pow('2087987436534566.46411')\r\n // should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815\r\n k = Math.min(12, (e + '').length);\r\n\r\n // r = x^y = exp(y*ln(x))\r\n r = naturalExponential(y.times(naturalLogarithm(x, pr + k)), pr);\r\n\r\n // r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40)\r\n if (r.d) {\r\n\r\n // Truncate to the required precision plus five rounding digits.\r\n r = finalise(r, pr + 5, 1);\r\n\r\n // If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate\r\n // the result.\r\n if (checkRoundingDigits(r.d, pr, rm)) {\r\n e = pr + 10;\r\n\r\n // Truncate to the increased precision plus five rounding digits.\r\n r = finalise(naturalExponential(y.times(naturalLogarithm(x, e + k)), e), e + 5, 1);\r\n\r\n // Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9).\r\n if (+digitsToString(r.d).slice(pr + 1, pr + 15) + 1 == 1e14) {\r\n r = finalise(r, pr + 1, 0);\r\n }\r\n }\r\n }\r\n\r\n r.s = s;\r\n external = true;\r\n Ctor.rounding = rm;\r\n\r\n return finalise(r, pr, rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal rounded to `sd` significant digits\r\n * using rounding mode `rounding`.\r\n *\r\n * Return exponential notation if `sd` is less than the number of digits necessary to represent\r\n * the integer part of the value in normal notation.\r\n *\r\n * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n */\r\nP.toPrecision = function (sd, rm) {\r\n var str,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (sd === void 0) {\r\n str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);\r\n } else {\r\n checkInt32(sd, 1, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n\r\n x = finalise(new Ctor(x), sd, rm);\r\n str = finiteToString(x, sd <= x.e || x.e <= Ctor.toExpNeg, sd);\r\n }\r\n\r\n return x.isNeg() && !x.isZero() ? '-' + str : str;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd`\r\n * significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if\r\n * omitted.\r\n *\r\n * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.\r\n * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.\r\n *\r\n * 'toSD() digits out of range: {sd}'\r\n * 'toSD() digits not an integer: {sd}'\r\n * 'toSD() rounding mode not an integer: {rm}'\r\n * 'toSD() rounding mode out of range: {rm}'\r\n *\r\n */\r\nP.toSignificantDigits = P.toSD = function (sd, rm) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n\r\n if (sd === void 0) {\r\n sd = Ctor.precision;\r\n rm = Ctor.rounding;\r\n } else {\r\n checkInt32(sd, 1, MAX_DIGITS);\r\n\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n }\r\n\r\n return finalise(new Ctor(x), sd, rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal.\r\n *\r\n * Return exponential notation if this Decimal has a positive exponent equal to or greater than\r\n * `toExpPos`, or a negative exponent equal to or less than `toExpNeg`.\r\n *\r\n */\r\nP.toString = function () {\r\n var x = this,\r\n Ctor = x.constructor,\r\n str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);\r\n\r\n return x.isNeg() && !x.isZero() ? '-' + str : str;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal truncated to a whole number.\r\n *\r\n */\r\nP.truncated = P.trunc = function () {\r\n return finalise(new this.constructor(this), this.e + 1, 1);\r\n};\r\n\r\n\r\n/*\r\n * Return a string representing the value of this Decimal.\r\n * Unlike `toString`, negative zero will include the minus sign.\r\n *\r\n */\r\nP.valueOf = P.toJSON = function () {\r\n var x = this,\r\n Ctor = x.constructor,\r\n str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);\r\n\r\n return x.isNeg() ? '-' + str : str;\r\n};\r\n\r\n\r\n// Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers.\r\n\r\n\r\n/*\r\n * digitsToString P.cubeRoot, P.logarithm, P.squareRoot, P.toFraction, P.toPower,\r\n * finiteToString, naturalExponential, naturalLogarithm\r\n * checkInt32 P.toDecimalPlaces, P.toExponential, P.toFixed, P.toNearest,\r\n * P.toPrecision, P.toSignificantDigits, toStringBinary, random\r\n * checkRoundingDigits P.logarithm, P.toPower, naturalExponential, naturalLogarithm\r\n * convertBase toStringBinary, parseOther\r\n * cos P.cos\r\n * divide P.atanh, P.cubeRoot, P.dividedBy, P.dividedToIntegerBy,\r\n * P.logarithm, P.modulo, P.squareRoot, P.tan, P.tanh, P.toFraction,\r\n * P.toNearest, toStringBinary, naturalExponential, naturalLogarithm,\r\n * taylorSeries, atan2, parseOther\r\n * finalise P.absoluteValue, P.atan, P.atanh, P.ceil, P.cos, P.cosh,\r\n * P.cubeRoot, P.dividedToIntegerBy, P.floor, P.logarithm, P.minus,\r\n * P.modulo, P.negated, P.plus, P.round, P.sin, P.sinh, P.squareRoot,\r\n * P.tan, P.times, P.toDecimalPlaces, P.toExponential, P.toFixed,\r\n * P.toNearest, P.toPower, P.toPrecision, P.toSignificantDigits,\r\n * P.truncated, divide, getLn10, getPi, naturalExponential,\r\n * naturalLogarithm, ceil, floor, round, trunc\r\n * finiteToString P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf,\r\n * toStringBinary\r\n * getBase10Exponent P.minus, P.plus, P.times, parseOther\r\n * getLn10 P.logarithm, naturalLogarithm\r\n * getPi P.acos, P.asin, P.atan, toLessThanHalfPi, atan2\r\n * getPrecision P.precision, P.toFraction\r\n * getZeroString digitsToString, finiteToString\r\n * intPow P.toPower, parseOther\r\n * isOdd toLessThanHalfPi\r\n * maxOrMin max, min\r\n * naturalExponential P.naturalExponential, P.toPower\r\n * naturalLogarithm P.acosh, P.asinh, P.atanh, P.logarithm, P.naturalLogarithm,\r\n * P.toPower, naturalExponential\r\n * nonFiniteToString finiteToString, toStringBinary\r\n * parseDecimal Decimal\r\n * parseOther Decimal\r\n * sin P.sin\r\n * taylorSeries P.cosh, P.sinh, cos, sin\r\n * toLessThanHalfPi P.cos, P.sin\r\n * toStringBinary P.toBinary, P.toHexadecimal, P.toOctal\r\n * truncate intPow\r\n *\r\n * Throws: P.logarithm, P.precision, P.toFraction, checkInt32, getLn10, getPi,\r\n * naturalLogarithm, config, parseOther, random, Decimal\r\n */\r\n\r\n\r\nfunction digitsToString(d) {\r\n var i, k, ws,\r\n indexOfLastWord = d.length - 1,\r\n str = '',\r\n w = d[0];\r\n\r\n if (indexOfLastWord > 0) {\r\n str += w;\r\n for (i = 1; i < indexOfLastWord; i++) {\r\n ws = d[i] + '';\r\n k = LOG_BASE - ws.length;\r\n if (k) str += getZeroString(k);\r\n str += ws;\r\n }\r\n\r\n w = d[i];\r\n ws = w + '';\r\n k = LOG_BASE - ws.length;\r\n if (k) str += getZeroString(k);\r\n } else if (w === 0) {\r\n return '0';\r\n }\r\n\r\n // Remove trailing zeros of last w.\r\n for (; w % 10 === 0;) w /= 10;\r\n\r\n return str + w;\r\n}\r\n\r\n\r\nfunction checkInt32(i, min, max) {\r\n if (i !== ~~i || i < min || i > max) {\r\n throw Error(invalidArgument + i);\r\n }\r\n}\r\n\r\n\r\n/*\r\n * Check 5 rounding digits if `repeating` is null, 4 otherwise.\r\n * `repeating == null` if caller is `log` or `pow`,\r\n * `repeating != null` if caller is `naturalLogarithm` or `naturalExponential`.\r\n */\r\nfunction checkRoundingDigits(d, i, rm, repeating) {\r\n var di, k, r, rd;\r\n\r\n // Get the length of the first word of the array d.\r\n for (k = d[0]; k >= 10; k /= 10) --i;\r\n\r\n // Is the rounding digit in the first word of d?\r\n if (--i < 0) {\r\n i += LOG_BASE;\r\n di = 0;\r\n } else {\r\n di = Math.ceil((i + 1) / LOG_BASE);\r\n i %= LOG_BASE;\r\n }\r\n\r\n // i is the index (0 - 6) of the rounding digit.\r\n // E.g. if within the word 3487563 the first rounding digit is 5,\r\n // then i = 4, k = 1000, rd = 3487563 % 1000 = 563\r\n k = mathpow(10, LOG_BASE - i);\r\n rd = d[di] % k | 0;\r\n\r\n if (repeating == null) {\r\n if (i < 3) {\r\n if (i == 0) rd = rd / 100 | 0;\r\n else if (i == 1) rd = rd / 10 | 0;\r\n r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 50000 || rd == 0;\r\n } else {\r\n r = (rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2) &&\r\n (d[di + 1] / k / 100 | 0) == mathpow(10, i - 2) - 1 ||\r\n (rd == k / 2 || rd == 0) && (d[di + 1] / k / 100 | 0) == 0;\r\n }\r\n } else {\r\n if (i < 4) {\r\n if (i == 0) rd = rd / 1000 | 0;\r\n else if (i == 1) rd = rd / 100 | 0;\r\n else if (i == 2) rd = rd / 10 | 0;\r\n r = (repeating || rm < 4) && rd == 9999 || !repeating && rm > 3 && rd == 4999;\r\n } else {\r\n r = ((repeating || rm < 4) && rd + 1 == k ||\r\n (!repeating && rm > 3) && rd + 1 == k / 2) &&\r\n (d[di + 1] / k / 1000 | 0) == mathpow(10, i - 3) - 1;\r\n }\r\n }\r\n\r\n return r;\r\n}\r\n\r\n\r\n// Convert string of `baseIn` to an array of numbers of `baseOut`.\r\n// Eg. convertBase('255', 10, 16) returns [15, 15].\r\n// Eg. convertBase('ff', 16, 10) returns [2, 5, 5].\r\nfunction convertBase(str, baseIn, baseOut) {\r\n var j,\r\n arr = [0],\r\n arrL,\r\n i = 0,\r\n strL = str.length;\r\n\r\n for (; i < strL;) {\r\n for (arrL = arr.length; arrL--;) arr[arrL] *= baseIn;\r\n arr[0] += NUMERALS.indexOf(str.charAt(i++));\r\n for (j = 0; j < arr.length; j++) {\r\n if (arr[j] > baseOut - 1) {\r\n if (arr[j + 1] === void 0) arr[j + 1] = 0;\r\n arr[j + 1] += arr[j] / baseOut | 0;\r\n arr[j] %= baseOut;\r\n }\r\n }\r\n }\r\n\r\n return arr.reverse();\r\n}\r\n\r\n\r\n/*\r\n * cos(x) = 1 - x^2/2! + x^4/4! - ...\r\n * |x| < pi/2\r\n *\r\n */\r\nfunction cosine(Ctor, x) {\r\n var k, len, y;\r\n\r\n if (x.isZero()) return x;\r\n\r\n // Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1\r\n // i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1\r\n\r\n // Estimate the optimum number of times to use the argument reduction.\r\n len = x.d.length;\r\n if (len < 32) {\r\n k = Math.ceil(len / 3);\r\n y = (1 / tinyPow(4, k)).toString();\r\n } else {\r\n k = 16;\r\n y = '2.3283064365386962890625e-10';\r\n }\r\n\r\n Ctor.precision += k;\r\n\r\n x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1));\r\n\r\n // Reverse argument reduction\r\n for (var i = k; i--;) {\r\n var cos2x = x.times(x);\r\n x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1);\r\n }\r\n\r\n Ctor.precision -= k;\r\n\r\n return x;\r\n}\r\n\r\n\r\n/*\r\n * Perform division in the specified base.\r\n */\r\nvar divide = (function () {\r\n\r\n // Assumes non-zero x and k, and hence non-zero result.\r\n function multiplyInteger(x, k, base) {\r\n var temp,\r\n carry = 0,\r\n i = x.length;\r\n\r\n for (x = x.slice(); i--;) {\r\n temp = x[i] * k + carry;\r\n x[i] = temp % base | 0;\r\n carry = temp / base | 0;\r\n }\r\n\r\n if (carry) x.unshift(carry);\r\n\r\n return x;\r\n }\r\n\r\n function compare(a, b, aL, bL) {\r\n var i, r;\r\n\r\n if (aL != bL) {\r\n r = aL > bL ? 1 : -1;\r\n } else {\r\n for (i = r = 0; i < aL; i++) {\r\n if (a[i] != b[i]) {\r\n r = a[i] > b[i] ? 1 : -1;\r\n break;\r\n }\r\n }\r\n }\r\n\r\n return r;\r\n }\r\n\r\n function subtract(a, b, aL, base) {\r\n var i = 0;\r\n\r\n // Subtract b from a.\r\n for (; aL--;) {\r\n a[aL] -= i;\r\n i = a[aL] < b[aL] ? 1 : 0;\r\n a[aL] = i * base + a[aL] - b[aL];\r\n }\r\n\r\n // Remove leading zeros.\r\n for (; !a[0] && a.length > 1;) a.shift();\r\n }\r\n\r\n return function (x, y, pr, rm, dp, base) {\r\n var cmp, e, i, k, logBase, more, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0,\r\n yL, yz,\r\n Ctor = x.constructor,\r\n sign = x.s == y.s ? 1 : -1,\r\n xd = x.d,\r\n yd = y.d;\r\n\r\n // Either NaN, Infinity or 0?\r\n if (!xd || !xd[0] || !yd || !yd[0]) {\r\n\r\n return new Ctor(// Return NaN if either NaN, or both Infinity or 0.\r\n !x.s || !y.s || (xd ? yd && xd[0] == yd[0] : !yd) ? NaN :\r\n\r\n // Return ±0 if x is 0 or y is ±Infinity, or return ±Infinity as y is 0.\r\n xd && xd[0] == 0 || !yd ? sign * 0 : sign / 0);\r\n }\r\n\r\n if (base) {\r\n logBase = 1;\r\n e = x.e - y.e;\r\n } else {\r\n base = BASE;\r\n logBase = LOG_BASE;\r\n e = mathfloor(x.e / logBase) - mathfloor(y.e / logBase);\r\n }\r\n\r\n yL = yd.length;\r\n xL = xd.length;\r\n q = new Ctor(sign);\r\n qd = q.d = [];\r\n\r\n // Result exponent may be one less than e.\r\n // The digit array of a Decimal from toStringBinary may have trailing zeros.\r\n for (i = 0; yd[i] == (xd[i] || 0); i++);\r\n\r\n if (yd[i] > (xd[i] || 0)) e--;\r\n\r\n if (pr == null) {\r\n sd = pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n } else if (dp) {\r\n sd = pr + (x.e - y.e) + 1;\r\n } else {\r\n sd = pr;\r\n }\r\n\r\n if (sd < 0) {\r\n qd.push(1);\r\n more = true;\r\n } else {\r\n\r\n // Convert precision in number of base 10 digits to base 1e7 digits.\r\n sd = sd / logBase + 2 | 0;\r\n i = 0;\r\n\r\n // divisor < 1e7\r\n if (yL == 1) {\r\n k = 0;\r\n yd = yd[0];\r\n sd++;\r\n\r\n // k is the carry.\r\n for (; (i < xL || k) && sd--; i++) {\r\n t = k * base + (xd[i] || 0);\r\n qd[i] = t / yd | 0;\r\n k = t % yd | 0;\r\n }\r\n\r\n more = k || i < xL;\r\n\r\n // divisor >= 1e7\r\n } else {\r\n\r\n // Normalise xd and yd so highest order digit of yd is >= base/2\r\n k = base / (yd[0] + 1) | 0;\r\n\r\n if (k > 1) {\r\n yd = multiplyInteger(yd, k, base);\r\n xd = multiplyInteger(xd, k, base);\r\n yL = yd.length;\r\n xL = xd.length;\r\n }\r\n\r\n xi = yL;\r\n rem = xd.slice(0, yL);\r\n remL = rem.length;\r\n\r\n // Add zeros to make remainder as long as divisor.\r\n for (; remL < yL;) rem[remL++] = 0;\r\n\r\n yz = yd.slice();\r\n yz.unshift(0);\r\n yd0 = yd[0];\r\n\r\n if (yd[1] >= base / 2) ++yd0;\r\n\r\n do {\r\n k = 0;\r\n\r\n // Compare divisor and remainder.\r\n cmp = compare(yd, rem, yL, remL);\r\n\r\n // If divisor < remainder.\r\n if (cmp < 0) {\r\n\r\n // Calculate trial digit, k.\r\n rem0 = rem[0];\r\n if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);\r\n\r\n // k will be how many times the divisor goes into the current remainder.\r\n k = rem0 / yd0 | 0;\r\n\r\n // Algorithm:\r\n // 1. product = divisor * trial digit (k)\r\n // 2. if product > remainder: product -= divisor, k--\r\n // 3. remainder -= product\r\n // 4. if product was < remainder at 2:\r\n // 5. compare new remainder and divisor\r\n // 6. If remainder > divisor: remainder -= divisor, k++\r\n\r\n if (k > 1) {\r\n if (k >= base) k = base - 1;\r\n\r\n // product = divisor * trial digit.\r\n prod = multiplyInteger(yd, k, base);\r\n prodL = prod.length;\r\n remL = rem.length;\r\n\r\n // Compare product and remainder.\r\n cmp = compare(prod, rem, prodL, remL);\r\n\r\n // product > remainder.\r\n if (cmp == 1) {\r\n k--;\r\n\r\n // Subtract divisor from product.\r\n subtract(prod, yL < prodL ? yz : yd, prodL, base);\r\n }\r\n } else {\r\n\r\n // cmp is -1.\r\n // If k is 0, there is no need to compare yd and rem again below, so change cmp to 1\r\n // to avoid it. If k is 1 there is a need to compare yd and rem again below.\r\n if (k == 0) cmp = k = 1;\r\n prod = yd.slice();\r\n }\r\n\r\n prodL = prod.length;\r\n if (prodL < remL) prod.unshift(0);\r\n\r\n // Subtract product from remainder.\r\n subtract(rem, prod, remL, base);\r\n\r\n // If product was < previous remainder.\r\n if (cmp == -1) {\r\n remL = rem.length;\r\n\r\n // Compare divisor and new remainder.\r\n cmp = compare(yd, rem, yL, remL);\r\n\r\n // If divisor < new remainder, subtract divisor from remainder.\r\n if (cmp < 1) {\r\n k++;\r\n\r\n // Subtract divisor from remainder.\r\n subtract(rem, yL < remL ? yz : yd, remL, base);\r\n }\r\n }\r\n\r\n remL = rem.length;\r\n } else if (cmp === 0) {\r\n k++;\r\n rem = [0];\r\n } // if cmp === 1, k will be 0\r\n\r\n // Add the next digit, k, to the result array.\r\n qd[i++] = k;\r\n\r\n // Update the remainder.\r\n if (cmp && rem[0]) {\r\n rem[remL++] = xd[xi] || 0;\r\n } else {\r\n rem = [xd[xi]];\r\n remL = 1;\r\n }\r\n\r\n } while ((xi++ < xL || rem[0] !== void 0) && sd--);\r\n\r\n more = rem[0] !== void 0;\r\n }\r\n\r\n // Leading zero?\r\n if (!qd[0]) qd.shift();\r\n }\r\n\r\n // logBase is 1 when divide is being used for base conversion.\r\n if (logBase == 1) {\r\n q.e = e;\r\n inexact = more;\r\n } else {\r\n\r\n // To calculate q.e, first get the number of digits of qd[0].\r\n for (i = 1, k = qd[0]; k >= 10; k /= 10) i++;\r\n q.e = i + e * logBase - 1;\r\n\r\n finalise(q, dp ? pr + q.e + 1 : pr, rm, more);\r\n }\r\n\r\n return q;\r\n };\r\n})();\r\n\r\n\r\n/*\r\n * Round `x` to `sd` significant digits using rounding mode `rm`.\r\n * Check for over/under-flow.\r\n */\r\n function finalise(x, sd, rm, isTruncated) {\r\n var digits, i, j, k, rd, roundUp, w, xd, xdi,\r\n Ctor = x.constructor;\r\n\r\n // Don't round if sd is null or undefined.\r\n out: if (sd != null) {\r\n xd = x.d;\r\n\r\n // Infinity/NaN.\r\n if (!xd) return x;\r\n\r\n // rd: the rounding digit, i.e. the digit after the digit that may be rounded up.\r\n // w: the word of xd containing rd, a base 1e7 number.\r\n // xdi: the index of w within xd.\r\n // digits: the number of digits of w.\r\n // i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if\r\n // they had leading zeros)\r\n // j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero).\r\n\r\n // Get the length of the first word of the digits array xd.\r\n for (digits = 1, k = xd[0]; k >= 10; k /= 10) digits++;\r\n i = sd - digits;\r\n\r\n // Is the rounding digit in the first word of xd?\r\n if (i < 0) {\r\n i += LOG_BASE;\r\n j = sd;\r\n w = xd[xdi = 0];\r\n\r\n // Get the rounding digit at index j of w.\r\n rd = w / mathpow(10, digits - j - 1) % 10 | 0;\r\n } else {\r\n xdi = Math.ceil((i + 1) / LOG_BASE);\r\n k = xd.length;\r\n if (xdi >= k) {\r\n if (isTruncated) {\r\n\r\n // Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`.\r\n for (; k++ <= xdi;) xd.push(0);\r\n w = rd = 0;\r\n digits = 1;\r\n i %= LOG_BASE;\r\n j = i - LOG_BASE + 1;\r\n } else {\r\n break out;\r\n }\r\n } else {\r\n w = k = xd[xdi];\r\n\r\n // Get the number of digits of w.\r\n for (digits = 1; k >= 10; k /= 10) digits++;\r\n\r\n // Get the index of rd within w.\r\n i %= LOG_BASE;\r\n\r\n // Get the index of rd within w, adjusted for leading zeros.\r\n // The number of leading zeros of w is given by LOG_BASE - digits.\r\n j = i - LOG_BASE + digits;\r\n\r\n // Get the rounding digit at index j of w.\r\n rd = j < 0 ? 0 : w / mathpow(10, digits - j - 1) % 10 | 0;\r\n }\r\n }\r\n\r\n // Are there any non-zero digits after the rounding digit?\r\n isTruncated = isTruncated || sd < 0 ||\r\n xd[xdi + 1] !== void 0 || (j < 0 ? w : w % mathpow(10, digits - j - 1));\r\n\r\n // The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right\r\n // of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression\r\n // will give 714.\r\n\r\n roundUp = rm < 4\r\n ? (rd || isTruncated) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))\r\n : rd > 5 || rd == 5 && (rm == 4 || isTruncated || rm == 6 &&\r\n\r\n // Check whether the digit to the left of the rounding digit is odd.\r\n ((i > 0 ? j > 0 ? w / mathpow(10, digits - j) : 0 : xd[xdi - 1]) % 10) & 1 ||\r\n rm == (x.s < 0 ? 8 : 7));\r\n\r\n if (sd < 1 || !xd[0]) {\r\n xd.length = 0;\r\n if (roundUp) {\r\n\r\n // Convert sd to decimal places.\r\n sd -= x.e + 1;\r\n\r\n // 1, 0.1, 0.01, 0.001, 0.0001 etc.\r\n xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE);\r\n x.e = -sd || 0;\r\n } else {\r\n\r\n // Zero.\r\n xd[0] = x.e = 0;\r\n }\r\n\r\n return x;\r\n }\r\n\r\n // Remove excess digits.\r\n if (i == 0) {\r\n xd.length = xdi;\r\n k = 1;\r\n xdi--;\r\n } else {\r\n xd.length = xdi + 1;\r\n k = mathpow(10, LOG_BASE - i);\r\n\r\n // E.g. 56700 becomes 56000 if 7 is the rounding digit.\r\n // j > 0 means i > number of leading zeros of w.\r\n xd[xdi] = j > 0 ? (w / mathpow(10, digits - j) % mathpow(10, j) | 0) * k : 0;\r\n }\r\n\r\n if (roundUp) {\r\n for (;;) {\r\n\r\n // Is the digit to be rounded up in the first word of xd?\r\n if (xdi == 0) {\r\n\r\n // i will be the length of xd[0] before k is added.\r\n for (i = 1, j = xd[0]; j >= 10; j /= 10) i++;\r\n j = xd[0] += k;\r\n for (k = 1; j >= 10; j /= 10) k++;\r\n\r\n // if i != k the length has increased.\r\n if (i != k) {\r\n x.e++;\r\n if (xd[0] == BASE) xd[0] = 1;\r\n }\r\n\r\n break;\r\n } else {\r\n xd[xdi] += k;\r\n if (xd[xdi] != BASE) break;\r\n xd[xdi--] = 0;\r\n k = 1;\r\n }\r\n }\r\n }\r\n\r\n // Remove trailing zeros.\r\n for (i = xd.length; xd[--i] === 0;) xd.pop();\r\n }\r\n\r\n if (external) {\r\n\r\n // Overflow?\r\n if (x.e > Ctor.maxE) {\r\n\r\n // Infinity.\r\n x.d = null;\r\n x.e = NaN;\r\n\r\n // Underflow?\r\n } else if (x.e < Ctor.minE) {\r\n\r\n // Zero.\r\n x.e = 0;\r\n x.d = [0];\r\n // Ctor.underflow = true;\r\n } // else Ctor.underflow = false;\r\n }\r\n\r\n return x;\r\n}\r\n\r\n\r\nfunction finiteToString(x, isExp, sd) {\r\n if (!x.isFinite()) return nonFiniteToString(x);\r\n var k,\r\n e = x.e,\r\n str = digitsToString(x.d),\r\n len = str.length;\r\n\r\n if (isExp) {\r\n if (sd && (k = sd - len) > 0) {\r\n str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k);\r\n } else if (len > 1) {\r\n str = str.charAt(0) + '.' + str.slice(1);\r\n }\r\n\r\n str = str + (x.e < 0 ? 'e' : 'e+') + x.e;\r\n } else if (e < 0) {\r\n str = '0.' + getZeroString(-e - 1) + str;\r\n if (sd && (k = sd - len) > 0) str += getZeroString(k);\r\n } else if (e >= len) {\r\n str += getZeroString(e + 1 - len);\r\n if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k);\r\n } else {\r\n if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k);\r\n if (sd && (k = sd - len) > 0) {\r\n if (e + 1 === len) str += '.';\r\n str += getZeroString(k);\r\n }\r\n }\r\n\r\n return str;\r\n}\r\n\r\n\r\n// Calculate the base 10 exponent from the base 1e7 exponent.\r\nfunction getBase10Exponent(digits, e) {\r\n var w = digits[0];\r\n\r\n // Add the number of digits of the first word of the digits array.\r\n for ( e *= LOG_BASE; w >= 10; w /= 10) e++;\r\n return e;\r\n}\r\n\r\n\r\nfunction getLn10(Ctor, sd, pr) {\r\n if (sd > LN10_PRECISION) {\r\n\r\n // Reset global state in case the exception is caught.\r\n external = true;\r\n if (pr) Ctor.precision = pr;\r\n throw Error(precisionLimitExceeded);\r\n }\r\n return finalise(new Ctor(LN10), sd, 1, true);\r\n}\r\n\r\n\r\nfunction getPi(Ctor, sd, rm) {\r\n if (sd > PI_PRECISION) throw Error(precisionLimitExceeded);\r\n return finalise(new Ctor(PI), sd, rm, true);\r\n}\r\n\r\n\r\nfunction getPrecision(digits) {\r\n var w = digits.length - 1,\r\n len = w * LOG_BASE + 1;\r\n\r\n w = digits[w];\r\n\r\n // If non-zero...\r\n if (w) {\r\n\r\n // Subtract the number of trailing zeros of the last word.\r\n for (; w % 10 == 0; w /= 10) len--;\r\n\r\n // Add the number of digits of the first word.\r\n for (w = digits[0]; w >= 10; w /= 10) len++;\r\n }\r\n\r\n return len;\r\n}\r\n\r\n\r\nfunction getZeroString(k) {\r\n var zs = '';\r\n for (; k--;) zs += '0';\r\n return zs;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of Decimal `x` to the power `n`, where `n` is an\r\n * integer of type number.\r\n *\r\n * Implements 'exponentiation by squaring'. Called by `pow` and `parseOther`.\r\n *\r\n */\r\nfunction intPow(Ctor, x, n, pr) {\r\n var isTruncated,\r\n r = new Ctor(1),\r\n\r\n // Max n of 9007199254740991 takes 53 loop iterations.\r\n // Maximum digits array length; leaves [28, 34] guard digits.\r\n k = Math.ceil(pr / LOG_BASE + 4);\r\n\r\n external = false;\r\n\r\n for (;;) {\r\n if (n % 2) {\r\n r = r.times(x);\r\n if (truncate(r.d, k)) isTruncated = true;\r\n }\r\n\r\n n = mathfloor(n / 2);\r\n if (n === 0) {\r\n\r\n // To ensure correct rounding when r.d is truncated, increment the last word if it is zero.\r\n n = r.d.length - 1;\r\n if (isTruncated && r.d[n] === 0) ++r.d[n];\r\n break;\r\n }\r\n\r\n x = x.times(x);\r\n truncate(x.d, k);\r\n }\r\n\r\n external = true;\r\n\r\n return r;\r\n}\r\n\r\n\r\nfunction isOdd(n) {\r\n return n.d[n.d.length - 1] & 1;\r\n}\r\n\r\n\r\n/*\r\n * Handle `max` (`n` is -1) and `min` (`n` is 1).\r\n */\r\nfunction maxOrMin(Ctor, args, n) {\r\n var k, y,\r\n x = new Ctor(args[0]),\r\n i = 0;\r\n\r\n for (; ++i < args.length;) {\r\n y = new Ctor(args[i]);\r\n\r\n // NaN?\r\n if (!y.s) {\r\n x = y;\r\n break;\r\n }\r\n\r\n k = x.cmp(y);\r\n\r\n if (k === n || k === 0 && x.s === n) {\r\n x = y;\r\n }\r\n }\r\n\r\n return x;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the natural exponential of `x` rounded to `sd` significant\r\n * digits.\r\n *\r\n * Taylor/Maclaurin series.\r\n *\r\n * exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ...\r\n *\r\n * Argument reduction:\r\n * Repeat x = x / 32, k += 5, until |x| < 0.1\r\n * exp(x) = exp(x / 2^k)^(2^k)\r\n *\r\n * Previously, the argument was initially reduced by\r\n * exp(x) = exp(r) * 10^k where r = x - k * ln10, k = floor(x / ln10)\r\n * to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was\r\n * found to be slower than just dividing repeatedly by 32 as above.\r\n *\r\n * Max integer argument: exp('20723265836946413') = 6.3e+9000000000000000\r\n * Min integer argument: exp('-20723265836946411') = 1.2e-9000000000000000\r\n * (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324)\r\n *\r\n * exp(Infinity) = Infinity\r\n * exp(-Infinity) = 0\r\n * exp(NaN) = NaN\r\n * exp(±0) = 1\r\n *\r\n * exp(x) is non-terminating for any finite, non-zero x.\r\n *\r\n * The result will always be correctly rounded.\r\n *\r\n */\r\nfunction naturalExponential(x, sd) {\r\n var denominator, guard, j, pow, sum, t, wpr,\r\n rep = 0,\r\n i = 0,\r\n k = 0,\r\n Ctor = x.constructor,\r\n rm = Ctor.rounding,\r\n pr = Ctor.precision;\r\n\r\n // 0/NaN/Infinity?\r\n if (!x.d || !x.d[0] || x.e > 17) {\r\n\r\n return new Ctor(x.d\r\n ? !x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0\r\n : x.s ? x.s < 0 ? 0 : x : 0 / 0);\r\n }\r\n\r\n if (sd == null) {\r\n external = false;\r\n wpr = pr;\r\n } else {\r\n wpr = sd;\r\n }\r\n\r\n t = new Ctor(0.03125);\r\n\r\n // while abs(x) >= 0.1\r\n while (x.e > -2) {\r\n\r\n // x = x / 2^5\r\n x = x.times(t);\r\n k += 5;\r\n }\r\n\r\n // Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision\r\n // necessary to ensure the first 4 rounding digits are correct.\r\n guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;\r\n wpr += guard;\r\n denominator = pow = sum = new Ctor(1);\r\n Ctor.precision = wpr;\r\n\r\n for (;;) {\r\n pow = finalise(pow.times(x), wpr, 1);\r\n denominator = denominator.times(++i);\r\n t = sum.plus(divide(pow, denominator, wpr, 1));\r\n\r\n if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {\r\n j = k;\r\n while (j--) sum = finalise(sum.times(sum), wpr, 1);\r\n\r\n // Check to see if the first 4 rounding digits are [49]999.\r\n // If so, repeat the summation with a higher precision, otherwise\r\n // e.g. with precision: 18, rounding: 1\r\n // exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123)\r\n // `wpr - guard` is the index of first rounding digit.\r\n if (sd == null) {\r\n\r\n if (rep < 3 && checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {\r\n Ctor.precision = wpr += 10;\r\n denominator = pow = t = new Ctor(1);\r\n i = 0;\r\n rep++;\r\n } else {\r\n return finalise(sum, Ctor.precision = pr, rm, external = true);\r\n }\r\n } else {\r\n Ctor.precision = pr;\r\n return sum;\r\n }\r\n }\r\n\r\n sum = t;\r\n }\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the natural logarithm of `x` rounded to `sd` significant\r\n * digits.\r\n *\r\n * ln(-n) = NaN\r\n * ln(0) = -Infinity\r\n * ln(-0) = -Infinity\r\n * ln(1) = 0\r\n * ln(Infinity) = Infinity\r\n * ln(-Infinity) = NaN\r\n * ln(NaN) = NaN\r\n *\r\n * ln(n) (n != 1) is non-terminating.\r\n *\r\n */\r\nfunction naturalLogarithm(y, sd) {\r\n var c, c0, denominator, e, numerator, rep, sum, t, wpr, x1, x2,\r\n n = 1,\r\n guard = 10,\r\n x = y,\r\n xd = x.d,\r\n Ctor = x.constructor,\r\n rm = Ctor.rounding,\r\n pr = Ctor.precision;\r\n\r\n // Is x negative or Infinity, NaN, 0 or 1?\r\n if (x.s < 0 || !xd || !xd[0] || !x.e && xd[0] == 1 && xd.length == 1) {\r\n return new Ctor(xd && !xd[0] ? -1 / 0 : x.s != 1 ? NaN : xd ? 0 : x);\r\n }\r\n\r\n if (sd == null) {\r\n external = false;\r\n wpr = pr;\r\n } else {\r\n wpr = sd;\r\n }\r\n\r\n Ctor.precision = wpr += guard;\r\n c = digitsToString(xd);\r\n c0 = c.charAt(0);\r\n\r\n if (Math.abs(e = x.e) < 1.5e15) {\r\n\r\n // Argument reduction.\r\n // The series converges faster the closer the argument is to 1, so using\r\n // ln(a^b) = b * ln(a), ln(a) = ln(a^b) / b\r\n // multiply the argument by itself until the leading digits of the significand are 7, 8, 9,\r\n // 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can\r\n // later be divided by this number, then separate out the power of 10 using\r\n // ln(a*10^b) = ln(a) + b*ln(10).\r\n\r\n // max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).\r\n //while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {\r\n // max n is 6 (gives 0.7 - 1.3)\r\n while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) {\r\n x = x.times(y);\r\n c = digitsToString(x.d);\r\n c0 = c.charAt(0);\r\n n++;\r\n }\r\n\r\n e = x.e;\r\n\r\n if (c0 > 1) {\r\n x = new Ctor('0.' + c);\r\n e++;\r\n } else {\r\n x = new Ctor(c0 + '.' + c.slice(1));\r\n }\r\n } else {\r\n\r\n // The argument reduction method above may result in overflow if the argument y is a massive\r\n // number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this\r\n // function using ln(x*10^e) = ln(x) + e*ln(10).\r\n t = getLn10(Ctor, wpr + 2, pr).times(e + '');\r\n x = naturalLogarithm(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t);\r\n Ctor.precision = pr;\r\n\r\n return sd == null ? finalise(x, pr, rm, external = true) : x;\r\n }\r\n\r\n // x1 is x reduced to a value near 1.\r\n x1 = x;\r\n\r\n // Taylor series.\r\n // ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)\r\n // where x = (y - 1)/(y + 1) (|x| < 1)\r\n sum = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1);\r\n x2 = finalise(x.times(x), wpr, 1);\r\n denominator = 3;\r\n\r\n for (;;) {\r\n numerator = finalise(numerator.times(x2), wpr, 1);\r\n t = sum.plus(divide(numerator, new Ctor(denominator), wpr, 1));\r\n\r\n if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {\r\n sum = sum.times(2);\r\n\r\n // Reverse the argument reduction. Check that e is not 0 because, besides preventing an\r\n // unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0.\r\n if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + ''));\r\n sum = divide(sum, new Ctor(n), wpr, 1);\r\n\r\n // Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has\r\n // been repeated previously) and the first 4 rounding digits 9999?\r\n // If so, restart the summation with a higher precision, otherwise\r\n // e.g. with precision: 12, rounding: 1\r\n // ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463.\r\n // `wpr - guard` is the index of first rounding digit.\r\n if (sd == null) {\r\n if (checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {\r\n Ctor.precision = wpr += guard;\r\n t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1);\r\n x2 = finalise(x.times(x), wpr, 1);\r\n denominator = rep = 1;\r\n } else {\r\n return finalise(sum, Ctor.precision = pr, rm, external = true);\r\n }\r\n } else {\r\n Ctor.precision = pr;\r\n return sum;\r\n }\r\n }\r\n\r\n sum = t;\r\n denominator += 2;\r\n }\r\n}\r\n\r\n\r\n// ±Infinity, NaN.\r\nfunction nonFiniteToString(x) {\r\n // Unsigned.\r\n return String(x.s * x.s / 0);\r\n}\r\n\r\n\r\n/*\r\n * Parse the value of a new Decimal `x` from string `str`.\r\n */\r\nfunction parseDecimal(x, str) {\r\n var e, i, len;\r\n\r\n // TODO BigInt str: no need to check for decimal point, exponential form or leading zeros.\r\n // Decimal point?\r\n if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');\r\n\r\n // Exponential form?\r\n if ((i = str.search(/e/i)) > 0) {\r\n\r\n // Determine exponent.\r\n if (e < 0) e = i;\r\n e += +str.slice(i + 1);\r\n str = str.substring(0, i);\r\n } else if (e < 0) {\r\n\r\n // Integer.\r\n e = str.length;\r\n }\r\n\r\n // Determine leading zeros.\r\n for (i = 0; str.charCodeAt(i) === 48; i++);\r\n\r\n // Determine trailing zeros.\r\n for (len = str.length; str.charCodeAt(len - 1) === 48; --len);\r\n str = str.slice(i, len);\r\n\r\n if (str) {\r\n len -= i;\r\n x.e = e = e - i - 1;\r\n x.d = [];\r\n\r\n // Transform base\r\n\r\n // e is the base 10 exponent.\r\n // i is where to slice str to get the first word of the digits array.\r\n i = (e + 1) % LOG_BASE;\r\n if (e < 0) i += LOG_BASE;\r\n\r\n if (i < len) {\r\n if (i) x.d.push(+str.slice(0, i));\r\n for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE));\r\n str = str.slice(i);\r\n i = LOG_BASE - str.length;\r\n } else {\r\n i -= len;\r\n }\r\n\r\n for (; i--;) str += '0';\r\n x.d.push(+str);\r\n\r\n if (external) {\r\n\r\n // Overflow?\r\n if (x.e > x.constructor.maxE) {\r\n\r\n // Infinity.\r\n x.d = null;\r\n x.e = NaN;\r\n\r\n // Underflow?\r\n } else if (x.e < x.constructor.minE) {\r\n\r\n // Zero.\r\n x.e = 0;\r\n x.d = [0];\r\n // x.constructor.underflow = true;\r\n } // else x.constructor.underflow = false;\r\n }\r\n } else {\r\n\r\n // Zero.\r\n x.e = 0;\r\n x.d = [0];\r\n }\r\n\r\n return x;\r\n}\r\n\r\n\r\n/*\r\n * Parse the value of a new Decimal `x` from a string `str`, which is not a decimal value.\r\n */\r\nfunction parseOther(x, str) {\r\n var base, Ctor, divisor, i, isFloat, len, p, xd, xe;\r\n\r\n if (str.indexOf('_') > -1) {\r\n str = str.replace(/(\\d)_(?=\\d)/g, '$1');\r\n if (isDecimal.test(str)) return parseDecimal(x, str);\r\n } else if (str === 'Infinity' || str === 'NaN') {\r\n if (!+str) x.s = NaN;\r\n x.e = NaN;\r\n x.d = null;\r\n return x;\r\n }\r\n\r\n if (isHex.test(str)) {\r\n base = 16;\r\n str = str.toLowerCase();\r\n } else if (isBinary.test(str)) {\r\n base = 2;\r\n } else if (isOctal.test(str)) {\r\n base = 8;\r\n } else {\r\n throw Error(invalidArgument + str);\r\n }\r\n\r\n // Is there a binary exponent part?\r\n i = str.search(/p/i);\r\n\r\n if (i > 0) {\r\n p = +str.slice(i + 1);\r\n str = str.substring(2, i);\r\n } else {\r\n str = str.slice(2);\r\n }\r\n\r\n // Convert `str` as an integer then divide the result by `base` raised to a power such that the\r\n // fraction part will be restored.\r\n i = str.indexOf('.');\r\n isFloat = i >= 0;\r\n Ctor = x.constructor;\r\n\r\n if (isFloat) {\r\n str = str.replace('.', '');\r\n len = str.length;\r\n i = len - i;\r\n\r\n // log[10](16) = 1.2041... , log[10](88) = 1.9444....\r\n divisor = intPow(Ctor, new Ctor(base), i, i * 2);\r\n }\r\n\r\n xd = convertBase(str, base, BASE);\r\n xe = xd.length - 1;\r\n\r\n // Remove trailing zeros.\r\n for (i = xe; xd[i] === 0; --i) xd.pop();\r\n if (i < 0) return new Ctor(x.s * 0);\r\n x.e = getBase10Exponent(xd, xe);\r\n x.d = xd;\r\n external = false;\r\n\r\n // At what precision to perform the division to ensure exact conversion?\r\n // maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount)\r\n // log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412\r\n // E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits.\r\n // maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount\r\n // Therefore using 4 * the number of digits of str will always be enough.\r\n if (isFloat) x = divide(x, divisor, len * 4);\r\n\r\n // Multiply by the binary exponent part if present.\r\n if (p) x = x.times(Math.abs(p) < 54 ? mathpow(2, p) : Decimal.pow(2, p));\r\n external = true;\r\n\r\n return x;\r\n}\r\n\r\n\r\n/*\r\n * sin(x) = x - x^3/3! + x^5/5! - ...\r\n * |x| < pi/2\r\n *\r\n */\r\nfunction sine(Ctor, x) {\r\n var k,\r\n len = x.d.length;\r\n\r\n if (len < 3) {\r\n return x.isZero() ? x : taylorSeries(Ctor, 2, x, x);\r\n }\r\n\r\n // Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x)\r\n // i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5)\r\n // and sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20))\r\n\r\n // Estimate the optimum number of times to use the argument reduction.\r\n k = 1.4 * Math.sqrt(len);\r\n k = k > 16 ? 16 : k | 0;\r\n\r\n x = x.times(1 / tinyPow(5, k));\r\n x = taylorSeries(Ctor, 2, x, x);\r\n\r\n // Reverse argument reduction\r\n var sin2_x,\r\n d5 = new Ctor(5),\r\n d16 = new Ctor(16),\r\n d20 = new Ctor(20);\r\n for (; k--;) {\r\n sin2_x = x.times(x);\r\n x = x.times(d5.plus(sin2_x.times(d16.times(sin2_x).minus(d20))));\r\n }\r\n\r\n return x;\r\n}\r\n\r\n\r\n// Calculate Taylor series for `cos`, `cosh`, `sin` and `sinh`.\r\nfunction taylorSeries(Ctor, n, x, y, isHyperbolic) {\r\n var j, t, u, x2,\r\n i = 1,\r\n pr = Ctor.precision,\r\n k = Math.ceil(pr / LOG_BASE);\r\n\r\n external = false;\r\n x2 = x.times(x);\r\n u = new Ctor(y);\r\n\r\n for (;;) {\r\n t = divide(u.times(x2), new Ctor(n++ * n++), pr, 1);\r\n u = isHyperbolic ? y.plus(t) : y.minus(t);\r\n y = divide(t.times(x2), new Ctor(n++ * n++), pr, 1);\r\n t = u.plus(y);\r\n\r\n if (t.d[k] !== void 0) {\r\n for (j = k; t.d[j] === u.d[j] && j--;);\r\n if (j == -1) break;\r\n }\r\n\r\n j = u;\r\n u = y;\r\n y = t;\r\n t = j;\r\n i++;\r\n }\r\n\r\n external = true;\r\n t.d.length = k + 1;\r\n\r\n return t;\r\n}\r\n\r\n\r\n// Exponent e must be positive and non-zero.\r\nfunction tinyPow(b, e) {\r\n var n = b;\r\n while (--e) n *= b;\r\n return n;\r\n}\r\n\r\n\r\n// Return the absolute value of `x` reduced to less than or equal to half pi.\r\nfunction toLessThanHalfPi(Ctor, x) {\r\n var t,\r\n isNeg = x.s < 0,\r\n pi = getPi(Ctor, Ctor.precision, 1),\r\n halfPi = pi.times(0.5);\r\n\r\n x = x.abs();\r\n\r\n if (x.lte(halfPi)) {\r\n quadrant = isNeg ? 4 : 1;\r\n return x;\r\n }\r\n\r\n t = x.divToInt(pi);\r\n\r\n if (t.isZero()) {\r\n quadrant = isNeg ? 3 : 2;\r\n } else {\r\n x = x.minus(t.times(pi));\r\n\r\n // 0 <= x < pi\r\n if (x.lte(halfPi)) {\r\n quadrant = isOdd(t) ? (isNeg ? 2 : 3) : (isNeg ? 4 : 1);\r\n return x;\r\n }\r\n\r\n quadrant = isOdd(t) ? (isNeg ? 1 : 4) : (isNeg ? 3 : 2);\r\n }\r\n\r\n return x.minus(pi).abs();\r\n}\r\n\r\n\r\n/*\r\n * Return the value of Decimal `x` as a string in base `baseOut`.\r\n *\r\n * If the optional `sd` argument is present include a binary exponent suffix.\r\n */\r\nfunction toStringBinary(x, baseOut, sd, rm) {\r\n var base, e, i, k, len, roundUp, str, xd, y,\r\n Ctor = x.constructor,\r\n isExp = sd !== void 0;\r\n\r\n if (isExp) {\r\n checkInt32(sd, 1, MAX_DIGITS);\r\n if (rm === void 0) rm = Ctor.rounding;\r\n else checkInt32(rm, 0, 8);\r\n } else {\r\n sd = Ctor.precision;\r\n rm = Ctor.rounding;\r\n }\r\n\r\n if (!x.isFinite()) {\r\n str = nonFiniteToString(x);\r\n } else {\r\n str = finiteToString(x);\r\n i = str.indexOf('.');\r\n\r\n // Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required:\r\n // maxBinaryExponent = floor((decimalExponent + 1) * log[2](10))\r\n // minBinaryExponent = floor(decimalExponent * log[2](10))\r\n // log[2](10) = 3.321928094887362347870319429489390175864\r\n\r\n if (isExp) {\r\n base = 2;\r\n if (baseOut == 16) {\r\n sd = sd * 4 - 3;\r\n } else if (baseOut == 8) {\r\n sd = sd * 3 - 2;\r\n }\r\n } else {\r\n base = baseOut;\r\n }\r\n\r\n // Convert the number as an integer then divide the result by its base raised to a power such\r\n // that the fraction part will be restored.\r\n\r\n // Non-integer.\r\n if (i >= 0) {\r\n str = str.replace('.', '');\r\n y = new Ctor(1);\r\n y.e = str.length - i;\r\n y.d = convertBase(finiteToString(y), 10, base);\r\n y.e = y.d.length;\r\n }\r\n\r\n xd = convertBase(str, 10, base);\r\n e = len = xd.length;\r\n\r\n // Remove trailing zeros.\r\n for (; xd[--len] == 0;) xd.pop();\r\n\r\n if (!xd[0]) {\r\n str = isExp ? '0p+0' : '0';\r\n } else {\r\n if (i < 0) {\r\n e--;\r\n } else {\r\n x = new Ctor(x);\r\n x.d = xd;\r\n x.e = e;\r\n x = divide(x, y, sd, rm, 0, base);\r\n xd = x.d;\r\n e = x.e;\r\n roundUp = inexact;\r\n }\r\n\r\n // The rounding digit, i.e. the digit after the digit that may be rounded up.\r\n i = xd[sd];\r\n k = base / 2;\r\n roundUp = roundUp || xd[sd + 1] !== void 0;\r\n\r\n roundUp = rm < 4\r\n ? (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2))\r\n : i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 ||\r\n rm === (x.s < 0 ? 8 : 7));\r\n\r\n xd.length = sd;\r\n\r\n if (roundUp) {\r\n\r\n // Rounding up may mean the previous digit has to be rounded up and so on.\r\n for (; ++xd[--sd] > base - 1;) {\r\n xd[sd] = 0;\r\n if (!sd) {\r\n ++e;\r\n xd.unshift(1);\r\n }\r\n }\r\n }\r\n\r\n // Determine trailing zeros.\r\n for (len = xd.length; !xd[len - 1]; --len);\r\n\r\n // E.g. [4, 11, 15] becomes 4bf.\r\n for (i = 0, str = ''; i < len; i++) str += NUMERALS.charAt(xd[i]);\r\n\r\n // Add binary exponent suffix?\r\n if (isExp) {\r\n if (len > 1) {\r\n if (baseOut == 16 || baseOut == 8) {\r\n i = baseOut == 16 ? 4 : 3;\r\n for (--len; len % i; len++) str += '0';\r\n xd = convertBase(str, base, baseOut);\r\n for (len = xd.length; !xd[len - 1]; --len);\r\n\r\n // xd[0] will always be be 1\r\n for (i = 1, str = '1.'; i < len; i++) str += NUMERALS.charAt(xd[i]);\r\n } else {\r\n str = str.charAt(0) + '.' + str.slice(1);\r\n }\r\n }\r\n\r\n str = str + (e < 0 ? 'p' : 'p+') + e;\r\n } else if (e < 0) {\r\n for (; ++e;) str = '0' + str;\r\n str = '0.' + str;\r\n } else {\r\n if (++e > len) for (e -= len; e-- ;) str += '0';\r\n else if (e < len) str = str.slice(0, e) + '.' + str.slice(e);\r\n }\r\n }\r\n\r\n str = (baseOut == 16 ? '0x' : baseOut == 2 ? '0b' : baseOut == 8 ? '0o' : '') + str;\r\n }\r\n\r\n return x.s < 0 ? '-' + str : str;\r\n}\r\n\r\n\r\n// Does not strip trailing zeros.\r\nfunction truncate(arr, len) {\r\n if (arr.length > len) {\r\n arr.length = len;\r\n return true;\r\n }\r\n}\r\n\r\n\r\n// Decimal methods\r\n\r\n\r\n/*\r\n * abs\r\n * acos\r\n * acosh\r\n * add\r\n * asin\r\n * asinh\r\n * atan\r\n * atanh\r\n * atan2\r\n * cbrt\r\n * ceil\r\n * clamp\r\n * clone\r\n * config\r\n * cos\r\n * cosh\r\n * div\r\n * exp\r\n * floor\r\n * hypot\r\n * ln\r\n * log\r\n * log2\r\n * log10\r\n * max\r\n * min\r\n * mod\r\n * mul\r\n * pow\r\n * random\r\n * round\r\n * set\r\n * sign\r\n * sin\r\n * sinh\r\n * sqrt\r\n * sub\r\n * sum\r\n * tan\r\n * tanh\r\n * trunc\r\n */\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the absolute value of `x`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction abs(x) {\r\n return new this(x).abs();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arccosine in radians of `x`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction acos(x) {\r\n return new this(x).acos();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic cosine of `x`, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction acosh(x) {\r\n return new this(x).acosh();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the sum of `x` and `y`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n * y {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction add(x, y) {\r\n return new this(x).plus(y);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arcsine in radians of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction asin(x) {\r\n return new this(x).asin();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic sine of `x`, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction asinh(x) {\r\n return new this(x).asinh();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arctangent in radians of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction atan(x) {\r\n return new this(x).atan();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic tangent of `x`, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction atanh(x) {\r\n return new this(x).atanh();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arctangent in radians of `y/x` in the range -pi to pi\r\n * (inclusive), rounded to `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-pi, pi]\r\n *\r\n * y {number|string|bigint|Decimal} The y-coordinate.\r\n * x {number|string|bigint|Decimal} The x-coordinate.\r\n *\r\n * atan2(±0, -0) = ±pi\r\n * atan2(±0, +0) = ±0\r\n * atan2(±0, -x) = ±pi for x > 0\r\n * atan2(±0, x) = ±0 for x > 0\r\n * atan2(-y, ±0) = -pi/2 for y > 0\r\n * atan2(y, ±0) = pi/2 for y > 0\r\n * atan2(±y, -Infinity) = ±pi for finite y > 0\r\n * atan2(±y, +Infinity) = ±0 for finite y > 0\r\n * atan2(±Infinity, x) = ±pi/2 for finite x\r\n * atan2(±Infinity, -Infinity) = ±3*pi/4\r\n * atan2(±Infinity, +Infinity) = ±pi/4\r\n * atan2(NaN, x) = NaN\r\n * atan2(y, NaN) = NaN\r\n *\r\n */\r\nfunction atan2(y, x) {\r\n y = new this(y);\r\n x = new this(x);\r\n var r,\r\n pr = this.precision,\r\n rm = this.rounding,\r\n wpr = pr + 4;\r\n\r\n // Either NaN\r\n if (!y.s || !x.s) {\r\n r = new this(NaN);\r\n\r\n // Both ±Infinity\r\n } else if (!y.d && !x.d) {\r\n r = getPi(this, wpr, 1).times(x.s > 0 ? 0.25 : 0.75);\r\n r.s = y.s;\r\n\r\n // x is ±Infinity or y is ±0\r\n } else if (!x.d || y.isZero()) {\r\n r = x.s < 0 ? getPi(this, pr, rm) : new this(0);\r\n r.s = y.s;\r\n\r\n // y is ±Infinity or x is ±0\r\n } else if (!y.d || x.isZero()) {\r\n r = getPi(this, wpr, 1).times(0.5);\r\n r.s = y.s;\r\n\r\n // Both non-zero and finite\r\n } else if (x.s < 0) {\r\n this.precision = wpr;\r\n this.rounding = 1;\r\n r = this.atan(divide(y, x, wpr, 1));\r\n x = getPi(this, wpr, 1);\r\n this.precision = pr;\r\n this.rounding = rm;\r\n r = y.s < 0 ? r.minus(x) : r.plus(x);\r\n } else {\r\n r = this.atan(divide(y, x, wpr, 1));\r\n }\r\n\r\n return r;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the cube root of `x`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction cbrt(x) {\r\n return new this(x).cbrt();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` rounded to an integer using `ROUND_CEIL`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction ceil(x) {\r\n return finalise(x = new this(x), x.e + 1, 2);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` clamped to the range delineated by `min` and `max`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n * min {number|string|bigint|Decimal}\r\n * max {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction clamp(x, min, max) {\r\n return new this(x).clamp(min, max);\r\n}\r\n\r\n\r\n/*\r\n * Configure global settings for a Decimal constructor.\r\n *\r\n * `obj` is an object with one or more of the following properties,\r\n *\r\n * precision {number}\r\n * rounding {number}\r\n * toExpNeg {number}\r\n * toExpPos {number}\r\n * maxE {number}\r\n * minE {number}\r\n * modulo {number}\r\n * crypto {boolean|number}\r\n * defaults {true}\r\n *\r\n * E.g. Decimal.config({ precision: 20, rounding: 4 })\r\n *\r\n */\r\nfunction config(obj) {\r\n if (!obj || typeof obj !== 'object') throw Error(decimalError + 'Object expected');\r\n var i, p, v,\r\n useDefaults = obj.defaults === true,\r\n ps = [\r\n 'precision', 1, MAX_DIGITS,\r\n 'rounding', 0, 8,\r\n 'toExpNeg', -EXP_LIMIT, 0,\r\n 'toExpPos', 0, EXP_LIMIT,\r\n 'maxE', 0, EXP_LIMIT,\r\n 'minE', -EXP_LIMIT, 0,\r\n 'modulo', 0, 9\r\n ];\r\n\r\n for (i = 0; i < ps.length; i += 3) {\r\n if (p = ps[i], useDefaults) this[p] = DEFAULTS[p];\r\n if ((v = obj[p]) !== void 0) {\r\n if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v;\r\n else throw Error(invalidArgument + p + ': ' + v);\r\n }\r\n }\r\n\r\n if (p = 'crypto', useDefaults) this[p] = DEFAULTS[p];\r\n if ((v = obj[p]) !== void 0) {\r\n if (v === true || v === false || v === 0 || v === 1) {\r\n if (v) {\r\n if (typeof crypto != 'undefined' && crypto &&\r\n (crypto.getRandomValues || crypto.randomBytes)) {\r\n this[p] = true;\r\n } else {\r\n throw Error(cryptoUnavailable);\r\n }\r\n } else {\r\n this[p] = false;\r\n }\r\n } else {\r\n throw Error(invalidArgument + p + ': ' + v);\r\n }\r\n }\r\n\r\n return this;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the cosine of `x`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction cos(x) {\r\n return new this(x).cos();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic cosine of `x`, rounded to precision\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction cosh(x) {\r\n return new this(x).cosh();\r\n}\r\n\r\n\r\n/*\r\n * Create and return a Decimal constructor with the same configuration properties as this Decimal\r\n * constructor.\r\n *\r\n */\r\nfunction clone(obj) {\r\n var i, p, ps;\r\n\r\n /*\r\n * The Decimal constructor and exported function.\r\n * Return a new Decimal instance.\r\n *\r\n * v {number|string|bigint|Decimal} A numeric value.\r\n *\r\n */\r\n function Decimal(v) {\r\n var e, i, t,\r\n x = this;\r\n\r\n // Decimal called without new.\r\n if (!(x instanceof Decimal)) return new Decimal(v);\r\n\r\n // Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor\r\n // which points to Object.\r\n x.constructor = Decimal;\r\n\r\n if (isDecimalInstance(v)) {\r\n x.s = v.s;\r\n\r\n if (external) {\r\n if (!v.d || v.e > Decimal.maxE) {\r\n\r\n // Infinity.\r\n x.e = NaN;\r\n x.d = null;\r\n } else if (v.e < Decimal.minE) {\r\n\r\n // Zero.\r\n x.e = 0;\r\n x.d = [0];\r\n } else {\r\n x.e = v.e;\r\n x.d = v.d.slice();\r\n }\r\n } else {\r\n x.e = v.e;\r\n x.d = v.d ? v.d.slice() : v.d;\r\n }\r\n\r\n return;\r\n }\r\n\r\n t = typeof v;\r\n\r\n if (t === 'number') {\r\n if (v === 0) {\r\n x.s = 1 / v < 0 ? -1 : 1;\r\n x.e = 0;\r\n x.d = [0];\r\n return;\r\n }\r\n\r\n if (v < 0) {\r\n v = -v;\r\n x.s = -1;\r\n } else {\r\n x.s = 1;\r\n }\r\n\r\n // Fast path for small integers.\r\n if (v === ~~v && v < 1e7) {\r\n for (e = 0, i = v; i >= 10; i /= 10) e++;\r\n\r\n if (external) {\r\n if (e > Decimal.maxE) {\r\n x.e = NaN;\r\n x.d = null;\r\n } else if (e < Decimal.minE) {\r\n x.e = 0;\r\n x.d = [0];\r\n } else {\r\n x.e = e;\r\n x.d = [v];\r\n }\r\n } else {\r\n x.e = e;\r\n x.d = [v];\r\n }\r\n\r\n return;\r\n }\r\n\r\n // Infinity or NaN?\r\n if (v * 0 !== 0) {\r\n if (!v) x.s = NaN;\r\n x.e = NaN;\r\n x.d = null;\r\n return;\r\n }\r\n\r\n return parseDecimal(x, v.toString());\r\n }\r\n\r\n if (t === 'string') {\r\n if ((i = v.charCodeAt(0)) === 45) { // minus sign\r\n v = v.slice(1);\r\n x.s = -1;\r\n } else {\r\n if (i === 43) v = v.slice(1); // plus sign\r\n x.s = 1;\r\n }\r\n\r\n return isDecimal.test(v) ? parseDecimal(x, v) : parseOther(x, v);\r\n }\r\n\r\n if (t === 'bigint') {\r\n if (v < 0) {\r\n v = -v;\r\n x.s = -1;\r\n } else {\r\n x.s = 1;\r\n }\r\n\r\n return parseDecimal(x, v.toString());\r\n }\r\n\r\n throw Error(invalidArgument + v);\r\n }\r\n\r\n Decimal.prototype = P;\r\n\r\n Decimal.ROUND_UP = 0;\r\n Decimal.ROUND_DOWN = 1;\r\n Decimal.ROUND_CEIL = 2;\r\n Decimal.ROUND_FLOOR = 3;\r\n Decimal.ROUND_HALF_UP = 4;\r\n Decimal.ROUND_HALF_DOWN = 5;\r\n Decimal.ROUND_HALF_EVEN = 6;\r\n Decimal.ROUND_HALF_CEIL = 7;\r\n Decimal.ROUND_HALF_FLOOR = 8;\r\n Decimal.EUCLID = 9;\r\n\r\n Decimal.config = Decimal.set = config;\r\n Decimal.clone = clone;\r\n Decimal.isDecimal = isDecimalInstance;\r\n\r\n Decimal.abs = abs;\r\n Decimal.acos = acos;\r\n Decimal.acosh = acosh; // ES6\r\n Decimal.add = add;\r\n Decimal.asin = asin;\r\n Decimal.asinh = asinh; // ES6\r\n Decimal.atan = atan;\r\n Decimal.atanh = atanh; // ES6\r\n Decimal.atan2 = atan2;\r\n Decimal.cbrt = cbrt; // ES6\r\n Decimal.ceil = ceil;\r\n Decimal.clamp = clamp;\r\n Decimal.cos = cos;\r\n Decimal.cosh = cosh; // ES6\r\n Decimal.div = div;\r\n Decimal.exp = exp;\r\n Decimal.floor = floor;\r\n Decimal.hypot = hypot; // ES6\r\n Decimal.ln = ln;\r\n Decimal.log = log;\r\n Decimal.log10 = log10; // ES6\r\n Decimal.log2 = log2; // ES6\r\n Decimal.max = max;\r\n Decimal.min = min;\r\n Decimal.mod = mod;\r\n Decimal.mul = mul;\r\n Decimal.pow = pow;\r\n Decimal.random = random;\r\n Decimal.round = round;\r\n Decimal.sign = sign; // ES6\r\n Decimal.sin = sin;\r\n Decimal.sinh = sinh; // ES6\r\n Decimal.sqrt = sqrt;\r\n Decimal.sub = sub;\r\n Decimal.sum = sum;\r\n Decimal.tan = tan;\r\n Decimal.tanh = tanh; // ES6\r\n Decimal.trunc = trunc; // ES6\r\n\r\n if (obj === void 0) obj = {};\r\n if (obj) {\r\n if (obj.defaults !== true) {\r\n ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'maxE', 'minE', 'modulo', 'crypto'];\r\n for (i = 0; i < ps.length;) if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p];\r\n }\r\n }\r\n\r\n Decimal.config(obj);\r\n\r\n return Decimal;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` divided by `y`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n * y {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction div(x, y) {\r\n return new this(x).div(y);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the natural exponential of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} The power to which to raise the base of the natural log.\r\n *\r\n */\r\nfunction exp(x) {\r\n return new this(x).exp();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` round to an integer using `ROUND_FLOOR`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction floor(x) {\r\n return finalise(x = new this(x), x.e + 1, 3);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the square root of the sum of the squares of the arguments,\r\n * rounded to `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * hypot(a, b, ...) = sqrt(a^2 + b^2 + ...)\r\n *\r\n * arguments {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction hypot() {\r\n var i, n,\r\n t = new this(0);\r\n\r\n external = false;\r\n\r\n for (i = 0; i < arguments.length;) {\r\n n = new this(arguments[i++]);\r\n if (!n.d) {\r\n if (n.s) {\r\n external = true;\r\n return new this(1 / 0);\r\n }\r\n t = n;\r\n } else if (t.d) {\r\n t = t.plus(n.times(n));\r\n }\r\n }\r\n\r\n external = true;\r\n\r\n return t.sqrt();\r\n}\r\n\r\n\r\n/*\r\n * Return true if object is a Decimal instance (where Decimal is any Decimal constructor),\r\n * otherwise return false.\r\n *\r\n */\r\nfunction isDecimalInstance(obj) {\r\n return obj instanceof Decimal || obj && obj.toStringTag === tag || false;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the natural logarithm of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction ln(x) {\r\n return new this(x).ln();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the log of `x` to the base `y`, or to base 10 if no base\r\n * is specified, rounded to `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * log[y](x)\r\n *\r\n * x {number|string|bigint|Decimal} The argument of the logarithm.\r\n * y {number|string|bigint|Decimal} The base of the logarithm.\r\n *\r\n */\r\nfunction log(x, y) {\r\n return new this(x).log(y);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the base 2 logarithm of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction log2(x) {\r\n return new this(x).log(2);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the base 10 logarithm of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction log10(x) {\r\n return new this(x).log(10);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the maximum of the arguments.\r\n *\r\n * arguments {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction max() {\r\n return maxOrMin(this, arguments, -1);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the minimum of the arguments.\r\n *\r\n * arguments {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction min() {\r\n return maxOrMin(this, arguments, 1);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` modulo `y`, rounded to `precision` significant digits\r\n * using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n * y {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction mod(x, y) {\r\n return new this(x).mod(y);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` multiplied by `y`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n * y {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction mul(x, y) {\r\n return new this(x).mul(y);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` raised to the power `y`, rounded to precision\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} The base.\r\n * y {number|string|bigint|Decimal} The exponent.\r\n *\r\n */\r\nfunction pow(x, y) {\r\n return new this(x).pow(y);\r\n}\r\n\r\n\r\n/*\r\n * Returns a new Decimal with a random value equal to or greater than 0 and less than 1, and with\r\n * `sd`, or `Decimal.precision` if `sd` is omitted, significant digits (or less if trailing zeros\r\n * are produced).\r\n *\r\n * [sd] {number} Significant digits. Integer, 0 to MAX_DIGITS inclusive.\r\n *\r\n */\r\nfunction random(sd) {\r\n var d, e, k, n,\r\n i = 0,\r\n r = new this(1),\r\n rd = [];\r\n\r\n if (sd === void 0) sd = this.precision;\r\n else checkInt32(sd, 1, MAX_DIGITS);\r\n\r\n k = Math.ceil(sd / LOG_BASE);\r\n\r\n if (!this.crypto) {\r\n for (; i < k;) rd[i++] = Math.random() * 1e7 | 0;\r\n\r\n // Browsers supporting crypto.getRandomValues.\r\n } else if (crypto.getRandomValues) {\r\n d = crypto.getRandomValues(new Uint32Array(k));\r\n\r\n for (; i < k;) {\r\n n = d[i];\r\n\r\n // 0 <= n < 4294967296\r\n // Probability n >= 4.29e9, is 4967296 / 4294967296 = 0.00116 (1 in 865).\r\n if (n >= 4.29e9) {\r\n d[i] = crypto.getRandomValues(new Uint32Array(1))[0];\r\n } else {\r\n\r\n // 0 <= n <= 4289999999\r\n // 0 <= (n % 1e7) <= 9999999\r\n rd[i++] = n % 1e7;\r\n }\r\n }\r\n\r\n // Node.js supporting crypto.randomBytes.\r\n } else if (crypto.randomBytes) {\r\n\r\n // buffer\r\n d = crypto.randomBytes(k *= 4);\r\n\r\n for (; i < k;) {\r\n\r\n // 0 <= n < 2147483648\r\n n = d[i] + (d[i + 1] << 8) + (d[i + 2] << 16) + ((d[i + 3] & 0x7f) << 24);\r\n\r\n // Probability n >= 2.14e9, is 7483648 / 2147483648 = 0.0035 (1 in 286).\r\n if (n >= 2.14e9) {\r\n crypto.randomBytes(4).copy(d, i);\r\n } else {\r\n\r\n // 0 <= n <= 2139999999\r\n // 0 <= (n % 1e7) <= 9999999\r\n rd.push(n % 1e7);\r\n i += 4;\r\n }\r\n }\r\n\r\n i = k / 4;\r\n } else {\r\n throw Error(cryptoUnavailable);\r\n }\r\n\r\n k = rd[--i];\r\n sd %= LOG_BASE;\r\n\r\n // Convert trailing digits to zeros according to sd.\r\n if (k && sd) {\r\n n = mathpow(10, LOG_BASE - sd);\r\n rd[i] = (k / n | 0) * n;\r\n }\r\n\r\n // Remove trailing words which are zero.\r\n for (; rd[i] === 0; i--) rd.pop();\r\n\r\n // Zero?\r\n if (i < 0) {\r\n e = 0;\r\n rd = [0];\r\n } else {\r\n e = -1;\r\n\r\n // Remove leading words which are zero and adjust exponent accordingly.\r\n for (; rd[0] === 0; e -= LOG_BASE) rd.shift();\r\n\r\n // Count the digits of the first word of rd to determine leading zeros.\r\n for (k = 1, n = rd[0]; n >= 10; n /= 10) k++;\r\n\r\n // Adjust the exponent for leading zeros of the first word of rd.\r\n if (k < LOG_BASE) e -= LOG_BASE - k;\r\n }\r\n\r\n r.e = e;\r\n r.d = rd;\r\n\r\n return r;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` rounded to an integer using rounding mode `rounding`.\r\n *\r\n * To emulate `Math.round`, set rounding to 7 (ROUND_HALF_CEIL).\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction round(x) {\r\n return finalise(x = new this(x), x.e + 1, this.rounding);\r\n}\r\n\r\n\r\n/*\r\n * Return\r\n * 1 if x > 0,\r\n * -1 if x < 0,\r\n * 0 if x is 0,\r\n * -0 if x is -0,\r\n * NaN otherwise\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction sign(x) {\r\n x = new this(x);\r\n return x.d ? (x.d[0] ? x.s : 0 * x.s) : x.s || NaN;\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the sine of `x`, rounded to `precision` significant digits\r\n * using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction sin(x) {\r\n return new this(x).sin();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic sine of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction sinh(x) {\r\n return new this(x).sinh();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the square root of `x`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction sqrt(x) {\r\n return new this(x).sqrt();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` minus `y`, rounded to `precision` significant digits\r\n * using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n * y {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction sub(x, y) {\r\n return new this(x).sub(y);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the sum of the arguments, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * Only the result is rounded, not the intermediate calculations.\r\n *\r\n * arguments {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction sum() {\r\n var i = 0,\r\n args = arguments,\r\n x = new this(args[i]);\r\n\r\n external = false;\r\n for (; x.s && ++i < args.length;) x = x.plus(args[i]);\r\n external = true;\r\n\r\n return finalise(x, this.precision, this.rounding);\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the tangent of `x`, rounded to `precision` significant\r\n * digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction tan(x) {\r\n return new this(x).tan();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic tangent of `x`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * x {number|string|bigint|Decimal} A value in radians.\r\n *\r\n */\r\nfunction tanh(x) {\r\n return new this(x).tanh();\r\n}\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is `x` truncated to an integer.\r\n *\r\n * x {number|string|bigint|Decimal}\r\n *\r\n */\r\nfunction trunc(x) {\r\n return finalise(x = new this(x), x.e + 1, 1);\r\n}\r\n\r\n\r\nP[Symbol.for('nodejs.util.inspect.custom')] = P.toString;\r\nP[Symbol.toStringTag] = 'Decimal';\r\n\r\n// Create and configure initial Decimal constructor.\r\nexport var Decimal = P.constructor = clone(DEFAULTS);\r\n\r\n// Create the internal constants from their string values.\r\nLN10 = new Decimal(LN10);\r\nPI = new Decimal(PI);\r\n\r\nexport default Decimal;\r\n"],"names":["inexact","quadrant","EXP_LIMIT","MAX_DIGITS","NUMERALS","LN10","PI","DEFAULTS","precision","rounding","modulo","toExpNeg","toExpPos","minE","maxE","crypto","external","decimalError","invalidArgument","precisionLimitExceeded","cryptoUnavailable","tag","mathfloor","Math","floor","mathpow","pow","isBinary","isHex","isOctal","isDecimal","BASE","LN10_PRECISION","length","PI_PRECISION","P","toStringTag","digitsToString","d","i","k","ws","indexOfLastWord","str","w","getZeroString","checkInt32","min","max","Error","checkRoundingDigits","rm","repeating","di","r","rd","ceil","convertBase","baseIn","baseOut","j","arrL","arr","strL","indexOf","charAt","reverse","absoluteValue","abs","x","this","constructor","s","finalise","e","clampedTo","clamp","Ctor","NaN","gt","cmp","comparedTo","y","xdL","ydL","xd","yd","xs","ys","cosine","cos","pr","sd","len","isZero","tinyPow","toString","taylorSeries","times","cos2x","minus","plus","toLessThanHalfPi","neg","cubeRoot","cbrt","m","n","rep","t","t3","t3plusx","isFinite","toExponential","slice","divide","eq","decimalPlaces","dp","dividedBy","div","dividedToIntegerBy","divToInt","equals","greaterThan","greaterThanOrEqualTo","gte","hyperbolicCosine","cosh","one","cosh2_x","d8","hyperbolicSine","sinh","sqrt","sinh2_x","d5","d16","d20","hyperbolicTangent","tanh","inverseCosine","acos","isNeg","getPi","atan","inverseHyperbolicCosine","acosh","lte","ln","inverseHyperbolicSine","asinh","inverseHyperbolicTangent","atanh","wpr","xsd","inverseSine","asin","halfPi","inverseTangent","px","x2","isInteger","isInt","isNaN","isNegative","isPositive","isPos","lessThan","lt","lessThanOrEqualTo","logarithm","log","base","isBase10","denominator","inf","num","arg","naturalLogarithm","getLn10","sub","xe","xLTy","push","pop","shift","getBase10Exponent","mod","q","naturalExponential","exp","negated","add","carry","unshift","z","getPrecision","round","sine","sin","sin2_x","squareRoot","tangent","tan","mul","rL","toBinary","toStringBinary","toDecimalPlaces","toDP","finiteToString","toFixed","toFraction","maxD","d0","d1","d2","n0","n1","toHexadecimal","toHex","toNearest","toNumber","toOctal","toPower","yn","intPow","toPrecision","toSignificantDigits","toSD","truncated","trunc","valueOf","toJSON","multiplyInteger","temp","compare","a","b","aL","bL","subtract","logBase","more","prod","prodL","qd","rem","remL","rem0","xi","xL","yd0","yL","yz","sign","isTruncated","digits","roundUp","xdi","out","isExp","nonFiniteToString","zs","truncate","isOdd","maxOrMin","args","guard","sum","c","c0","numerator","x1","String","parseDecimal","replace","search","substring","charCodeAt","parseOther","divisor","isFloat","p","test","toLowerCase","Decimal","isHyperbolic","u","pi","atan2","config","obj","v","useDefaults","defaults","ps","getRandomValues","randomBytes","hypot","arguments","isDecimalInstance","log2","log10","random","Uint32Array","copy","Symbol","for","clone","prototype","ROUND_UP","ROUND_DOWN","ROUND_CEIL","ROUND_FLOOR","ROUND_HALF_UP","ROUND_HALF_DOWN","ROUND_HALF_EVEN","ROUND_HALF_CEIL","ROUND_HALF_FLOOR","EUCLID","set","hasOwnProperty"],"sourceRoot":""}